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ABSTRACT

As a unique biometric that can be perceived at a distance, gait
has broad applications in person authentication, social secu-
rity and so on. Existing gait recognition methods suffer from
changes in viewpoint and clothing and barely consider ex-
tracting diverse motion features, a fundamental characteristic
in gaits, from gait sequences. This paper proposes a novel mo-
tion modeling method to extract the discriminative and robust
representation. Specifically, we first extract the motion fea-
tures from the encoded motion sequences in the shallow layer.
Then we continuously enhance the motion feature in deep lay-
ers. This motion modeling approach is independent of main-
stream work in building network architectures. As a result,
one can apply this motion modeling method to any backbone
to improve gait recognition performance. In this paper, we
combine motion modeling with one commonly used back-
bone (GaitGL) as GaitGL-M to illustrate motion modeling.
Extensive experimental results on two commonly-used cross-
view gait datasets demonstrate the superior performance of
GaitGL-M over existing state-of-the-art methods.

Index Terms— motion modeling, plug-and-play

1. INTRODUCTION

Silhouette, a standard modality for appearance-based gait
recognition, is a binary map generated by segmenting the
individual and background. However, the silhouettes among
different individuals only have subtle variances when the
body shapes are similar, inducing the nondiscriminative of
the appearance-dependent gait feature. On the contrary, the
walking speed and gait cycle are distinguished even though
the body shapes look similar among these individuals. Addi-
tionally, the silhouettes of one individual visually differ when
the clothing or viewpoint varies, revealing the vulnerability
of the appearance-dependent gait feature. Nevertheless, this
person’s motion information, such as speed and gait cycle,
remains consistent. Fortunately, this motion information is
reflected in the frame-to-frame changes in the sequence of
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silhouettes, which can be explored to obtain discriminative
and robust gait features.

Recent works mainly aggregate the sequences in different
stages. Template-based methods [2–5] compress all silhou-
ettes into one gait template before extracting features, sac-
rificing the essential temporal information. Set-based meth-
ods [6, 7] rather aggregate after the feature extraction stage
by pooling. More recently, many new works [1, 8–11] further
aggregate the feature sequence in the feature extraction stage
using temporal convolution. However, it is hard to extract the
motion information through temporal aggregation. As one
recent work claimed [12], only relying on temporal convolu-
tion is not enough to ensure the uniqueness of the extracted
gait feature, let alone the temporal pooling. But, it is notice-
able that its theoretical analysis proves that the relationship
between adjacent frames can provide the distinguishability of
features.

Motivated by these observations, we propose a novel mo-
tion modeling for gait recognition, through utilizing the mo-
tion information inherent in silhouette sequence and enhanc-
ing the motion information in gait representation. Unlike the
prior work that employs local self-similarities as the motion
information [12], we define the motion information as the
holistic temporal changes of all body parts. Our motion mod-
eling method mainly comprises a Silhouette-level Motion ex-
tractor (SiMo), which facilitates silhouette motion encoding,
and a Feature-level Motion enhancement (FeMo), which pre-
serves feature-level motion details. This motion modeling
method is applicable to any existing backbone. To better illus-
trate its usage, we plug the SiMo and FeMo into GaitGL [1],
named GaitGL-M. Additionally, the performance of plugging
these two modules into GaitSet [6] is presented in experi-
ments (see Table 3).

The contributions of this paper are summarized as fol-
lows. 1) We propose a novel motion modeling method to
extract the discriminative and robust gait representation.
Moreover, this method is independent of network architec-
ture. Thus one can plug it into any existing backbone. 2)
We propose two plug-and-play modules in motion modeling,
including a silhouette-level motion extractor and feature-
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Fig. 1. The picture on the left is the overall framework of GaitGL-M. Removing SiMo and FeMo for motion modeling leaves
the architecture of GaitGL [1]. The upper part of the right image is the motion sequence construction process in SiMo, where
X is the silhouette sequence, B is the mask, and M represents the generated motion sequence. The lower part is the forward
path in FeMo, and the backward direction is treated similarly.

level motion enhancement. Additionally, we combine them
with one of the most popular backbones in gait recogni-
tion GaitGL as GaitGL-M to show the effectiveness of our
proposed modules. 3) Extensive experimental results demon-
strate the proposed GaitGL-M’s superiority in the CASIA-B
and OU-MVLP datasets, especially when spatial variations
appear.

2. METHODOLOGY

Figure 1 presents the framework of GaitGL-M, a combina-
tion of our motion modeling and one of the most popular
backbones-GaitGL. In GaitGL-M, the silhouette-level motion
extractor is paralleled with the original feature extractor, and
the features extracted by these two branches are concatenated
together as the subsequent input. The feature-level motion
enhancement is used to preserve motion details before feature
extraction in the global branch.

Before detailing the key modules in GaitGL-M, we pro-
vide the description of the gait data. We denote a gait se-
quence ofK frames as X = [S1,S2, . . . ,SK ] ∈ RK×C×H×W ,
where C, H , and W represent the number of color channels,
height, and width of one frame S, respectively. Instead of
using RGB video frames, the most popular modality used
in gait recognition is the silhouette, which is a binary image
highlighting the region of the person; correspondingly, C = 1
for silhouettes.

2.1. Silhouette-level Motion Extractor (SiMo)

The SiMo explicitly ensures the network’s perception of mo-
tion information. It first constructs the motion sequences by
seeing the dynamic region exclusively and then extracts the
shallow motion feature. Finally, we concatenate the motion
feature with the appearance feature. In this way, the sparse
motion won’t be diluted by the dense appearance feature.

Motion sequence construction: During a gait cycle, the
limbs move alternately. It means that the limbs move for a
period of time and are relatively static for a period of time in
a gait cycle. Considering the intermittent nature of the limb’s
motion, we establish the motion sequence at temporal clips
rather than the entire sequence to increase the representa-
tional space of motion. In addition, the process of generating
silhouette maps contains some noise. Thus, direct performing
motion filtering on the whole sequence introduces pseudo-
motion information. And selecting the motion signals from
temporal clips can also diminish this problem.

More specifically, we uniformly divide a given gait se-
quence into clips C ∈ RbK/Lc×L×H×W along the temporal
dimension. Then, the motion region mask Bi for i-th clip can
be generated by

Bi = max(Ci)−min(Ci), (1)

where the max and min denote the maximum and minimum
value of one spatial position among L frames for a clip, and
Bi ∈ RH×W . Obviously, we can get the motion clip by
multiplying each silhouette in the clip with its corresponding
mask in an element-wise manner, defined as follows:

Mi = Bi �Ci = [BiS(i−1)L+1, . . . ,BiS(i−1)L+L]. (2)

Then, concatenating the motion clip along the temporal di-
mension yields the final motion sequence. The constructed
motion sequence serves as the supplement input to the orig-
inal silhouette sequence, which could strengthen the robust-
ness of gait representation against the spatial variants.
Motion feature extraction: In order to extract the shallow
motion feature, we first aggregate the frame-level motion
within a short clip to obtain Mi. Then, all of them are
concatenated on the temporal dimension, denoted as M.
Subsequently, we feed the aggregated motion sequence M
into the convolution layer for extracting the motion feature
Fm acquainted with temporal evolution.



2.2. Feature-level Motion Enhancement (FeMo)

The stacked temporal convolutions aggregate the adjacent
frames and may weaken the inter-frame differences, making
the motion information hard to model. A natural idea to
address this issue is to boost the motion-related information
before each temporal convolution operation. Inspired by mo-
tion encoding in action recognition [13,14], we regard motion
intensity as an attention map to recalibrate the original fea-
tures and enhance motion-related features. The significant
difference from action recognition is that the only action in
gait is walking. We aim to mine different walking patterns
to identify identities, so fine-grained motion information is
necessary.

Firstly, we introduce a bi-directional fine and coarse tem-
poral difference module to distill the subtle motion informa-
tion from the feature volume. Enlarging the motion search
space allows us to understand the importance of different mo-
tion directions, and we enlarge the space by spatial convolu-
tion.

Consequently, the temporal difference is formulated as:

∆(Gt,Gt+1) = Conv2D(Gt+1)−Gt, (3)

where Conv2D denotes 2D convolution of size 3 × 3. Take
a single channel for example, the convolution kernel element
wi,j semantically represents the importance of different mo-
tion directions (i, j). The larger the value, the higher the de-
gree of attention to motion in the direction. After encoding
the fine-grained motion information of each cell, we summa-
rize the spatial information to represent the coarse motion of
the whole body by global average pooling:

∆C(Gt,Gt+1) = GAP(∆(Gt,Gt+1)), (4)

Moreover, we utilize bi-directional temporal differences
to enhance the richness of motion information expression.
Overall, the temporal differences are formulated as follows:{

DF
t = ∆(Gt,Gt+1) + ∆C(Gt,Gt+1),

DB
t = ∆(Gt+1,Gt) + ∆C(Gt+1,Gt).

(5)

Here the superscripts F and B denote the forward and
backward operations respectively.

Secondly, we recalibrate the module guided by motion in-
formation. A sigmoid function σ is utilized to map the motion
intensity into range (0, 1), yielding the average attention from
forward and backward directions:

W = (σ(DF) + σ(DB))/2 (6)

When conducting recalibration, the input feature performs
addition with the motion feature, which is the element-wise
product of the input feature and motion-aware attention, fol-
lowed by a convolutional layer to extract motion-aware spa-
tiotemporal feature:

Gm = Conv(G + G�W). (7)

2.3. Feature Mapping and Loss Function

After the whole feature extraction stages, we employ tempo-
ral max pooling to aggregate the feature volume, followed by
generalized-mean pooling (GeM) for spatial pooling [15]. Af-
terward, we utilize separate fully-connected layer and batch
normalization layer to map the feature into a metric space.
Following GaitGL [1], we use triplet loss and cross entropy
loss function to optimize GaitGL-M.

3. EXPERIMENTS

3.1. Datasets

CASIA-B dataset [16] is a widely used dataset containing
124 individuals. There are 11 camera-perspective uniformly
sampling from range (0◦, 180◦) with 10 sequences in 3 walk-
ing conditions for each individual. Normal status (NM) has
6 sequences, bag carrying (BG) and coat-wearing (CL) have
2 sequences respectively. Under the subject-independent
protocol [17], we use the large-sample training (LT) strat-
egy [18], in which the sequences are from 74 different identi-
ties. OU-MVLP is one of the biggest cross-view dataset [19]
with 10, 307 individuals. There are 14 views sampling from
(0◦, 90◦) and (270◦, 360◦) respectively per subject and 2 se-
quences (#seq-00, #seq-01) per view. The train data contains
5, 153 individuals, and another 5, 154 individuals are taken as
test data. In the testing phase, we set #seq-01 as gallery data.

3.2. Implementation Details

The gait silhouettes are normalized before being fed to the
network with a fixed input size, 64 × 44. And the batch size
(p, k) is (8, 8) in CASIA-B dataset and (32, 8) in OU-MVLP
dataset, respectively. The optimizer is Adam and the learning
rate is 1e-4 in all experiments. For experiments on CASIA-
B, the training iterations is set to 80k and the learning rate
decay to 1e-5 after 70k. For the OU-MVLP, the total itera-
tions are 90k, and the learning rate decay to 1e-5 after 80k.
In our GaitGL-M network for CASIA-B, the number of out-
put channel are 32, 128, 256, 256 for each stage respectively.
Since the OU-MVLP is 20 times bigger than CASIA-B, we
directly double the convolution layers in each block. Thus
the output channel of each stage holds 32, 128, 256, 256. Af-
ter the first stage, a channel interaction layer implemented by
a 1×1 convolution is added on OU-MVLP. Other hyperpa-
rameters are following the backbone’s settings. We use four
NVIDIA GeForce RTX 3090 GPUs for training GaitGL-M.

3.3. Comparison with the State-of-the-art Method

From Table 1, it can be seen that the average rank-1 accu-
racies of GaitGL-M outperforms GaitGL by 0.6%, 1.6% and
4.5% in the NM, BG, and CL conditions and implies the su-
periority of GaitGL-M. Noteworthy, the performance on 90◦



Gallery NM#1-4 0◦-180◦ MeanProbe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6

GaitSet [6] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart [8] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2

GaitEdge� [20] 97.2 99.1 99.2 98.3 97.3 95.5 97.1 99.4 99.3 98.5 96.4 97.9
GaitGL [1] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4
GaitGL-M 96.3 98.8 99.1 98.1 97.2 96.5 98.2 99.1 99.3 99.2 95.9 98.0

BG#1-2

GaitSet [6] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart [8] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5

GaitEdge� [20] 95.3 97.4 98.4 97.6 94.3 90.6 93.1 97.8 99.1 98.0 95.0 96.1
GaitGL [1] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5
GaitGL-M 93.7 96.4 97.4 97.2 96.2 93.4 95.5 97.8 98.4 97.8 93.1 96.1

CL#1-2

GaitSet [6] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart [8] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

GaitEdge� [20] 84.3 92.8 94.3 92.2 84.6 83.0 83.0 87.5 87.4 85.9 75.0 86.4
GaitGL [1] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6
GaitGL-M 79.6 93.4 95.0 92.4 88.4 82.5 86.9 91.4 93.9 90.1 75.3 88.1

Table 1. Averaged rank-1 accuracies on CASIA-B under three different conditions, excluding identical-view cases. The
superscript � notes that the input modality is RGB.

Method Probe view Mean0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GaitSet? [6] 78.7 87.4 89.8 90.0 87.8 88.5 97.5 81.3 86.2 88.9 89.1 87.1 87.6 86.1 86.9
GaitPart? [8] 82.1 88.8 90.7 90.8 89.5 89.7 89.1 84.7 87.4 89.9 90.0 88.7 88.9 87.8 88.4
GaitGL? [1] 84.3 89.9 91.1 91.4 90.9 90.6 90.2 88.3 88.1 90.3 90.4 89.6 89.4 88.6 89.5
GaitGL-M 87.1 91.0 91.4 91.8 91.7 91.3 91.1 90.3 89.6 90.7 90.8 90.5 90.2 89.9 90.5

Table 2. Averaged rank-1 accuracies on OU-MVLP, excluding identical-view cases. The superscript ? notes the average rank-1
accuracies are reproduced results in our test sets for a fair comparison.

Methods NM BG CL Mean
GaitGL [1] 97.4 94.5 83.6 91.8

w/ LAGM [12] 96.8 93.1 84.7 91.5
w/ SiMo 98.1 95.8 87.0 93.6
w/ FeMo 97.2 94.7 84.3 92.1
GaitGL-M 98.0 96.1 88.1 94.1

GaitSet [6] 95.0 87.2 70.4 84.2
w/ LAGM [12] 95.0 87.3 73.3 85.2
GaitSet-M 95.6 89.0 73.0 85.9

Table 3. The top half of the table ablates the effect of SiMo
and FeMo. The bottom half shows the results of applying the
proposed motion modeling to GaitSet.

has been upgraded by our GaitGL-M, exceeding GaitGL by
1.1% (NM), 4.1% (BG) and 3.5% (CL) since the evident leg-
ging movement in this viewpoint benefits GaitGL-M. More-
over, although GaitEdge takes the more informative RGB im-
age as input, our GaitGL-M with the silhouette as input still
surpasses it, achieving 1.7% higher in the CL. The superior
performance indicates that the GaitGL-M has a strong repre-
sentation ability, even under challenging conditions.

The experimental results on OU-MVLP (Table 2) show
great progress than GaitGL by 1.0%, demonstrating the su-
periority of GaitGL-M. Note that when discarding the illegal
sequences, the average rank-1 accuracy will rise to 97.1%.

3.4. Ablation Studies

To explore the contributions of SiMo and FeMo, we design
the ablation studies presented in Table 3. It is worth noting

that the proposed GaitGL-M outperforms GaitGL, even only
leaving one motion-aware module.

By comparing the designed SiMo and FeMo, we ob-
serve that the SiMo contributes more than the FeMo. The
possible reason is that the motion information is missed by
the smoothed effect of convolution as the network deepens.
Therefore, although it boosts the motion-related element, the
features themselves contain little motion information.

To further verify the application to other backbones, we
apply our SiMo and FeMo to GaitSet, shown on the bottom
part of Table 3. It can be found that the averaged rank-1 ac-
curacy has been upgraded by 1.7% with our modules. By
comparing with LAGM [12], which regards similarity as mo-
tion information, our method based on exploring the pattern
of the temporal changes can achieve more performance im-
provement.

4. CONCLUSION

This paper proposed a novel motion modeling to enjoy
the discrimination and robustness of the motion informa-
tion. Specifically, one silhouette-level motion extractor and
feature-level motion enhancement module have been devised
to facilitate the motion features in the whole feature extrac-
tion stages. Extensive experimental results verify that motion
matters in gait recognition and demonstrate the superiority of
our motion modeling, which may serve as a plug-and-play
module in future model designs.
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