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ABSTRACT

Reconstructing images using brain signals of imagined visuals
may provide an augmented vision to the disabled, leading to the
advancement of Brain-Computer Interface (BCI) technology. The
recent progress in deep learning has boosted the study area of syn-
thesizing images from brain signals using Generative Adversarial
Networks (GAN). In this work, we have proposed a framework for
synthesizing the images from the brain activity recorded by an elec-
troencephalogram (EEG) using small-size EEG datasets. This brain
activity is recorded from the subject’s head scalp using EEG when
they ask to visualize certain classes of Objects and English charac-
ters. We use a contrastive learning method in the proposed frame-
work to extract features from EEG signals and synthesize the images
from extracted features using conditional GAN. We modify the loss
function to train the GAN, which enables it to synthesize 128× 128
images using a small number of images. Further, we conduct abla-
tion studies and experiments to show the effectiveness of our pro-
posed framework over other state-of-the-art methods using the small
EEG dataset.

Index Terms— Deep Learning, EEG, GAN

1. INTRODUCTION

Human visual system is considered a highly advanced intelligent
information processor that generates rich 3D visuals with semantic
construction. The most challenging problem is to train artificial ma-
chines to construct images from brain activity directly to semantic
categories [1]. The possibility of brain-to-image construction signif-
icantly contributes to advancing the Brain-Computer Interface (BCI)
technology. The core purpose of BCI using invasive or non-invasive
techniques is to provide communication and control of external de-
vices by thought alone or using minimal muscular activity. This ef-
fort would be highly relevant in neuro-rehabilitation, i.e. to support
patients with disabilities to have better everyday communication in
their lives. Decoding brain responses to imagination/visual stimuli
would greatly benefit the communication exchange for the disabled
people. The most widely employed brain imaging modality with
high temporal precision is Electroencephalography (EEG) due to its
relatively lower cost and portability.

EEG is a non-invasive technique which makes it the most practi-
cal methodology to record the electrophysiological dynamics of the
brain. EEG signals have been used to analyze a wide spectrum of re-
search from aspects of cognition to clinical aspects [2]. For decades,
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EEG signals have been widely employed for classifying several dis-
orders or understanding brain dynamics. The successful implica-
tion of the past results can be seen in the BCI. A previous effort
made by the research community has shown promising results to
augment healthy individuals with additional sensory or motor ca-
pabilities [3]. The most intriguing task is to decode the content of
the mind using brain signals and draw a link between them. Two
most challenging endeavors in this space are to reconstruct the vi-
sualized images [4] and decode imagined speech-to-text [5] based
solely on recorded brain signals. Vision neuroscientists made the
initial attempts [6, 7, 8] to provide an evidence of visual stimuli fea-
tures represented in recorded brain activity. These attempts initiated
the classification of image categories using brain signals using deep
learning and further led to the reconstruction and generation of the
images [9].

Our contributions are as follows: 1) A framework that can syn-
thesize images using a small EEG dataset, 2) Use of semi-hard triplet
loss [10] to learn features from EEG signals that show better k-means
accuracy than the softmax counterpart, as shown in Figs. [2,3] and
3) Use of mode seeking regularization [11] and data augmentation
[12] based modification to GAN for synthesizing high-quality im-
ages using conditional GAN as shown in Fig. 4(b).1

2. RELATED WORKS

The development of advanced deep generative architectures in recent
times has made it possible to see images from brain signals. The
initial study by Kavasidis et al. implemented long short-term mem-
ory (LSTM) stacked with generative techniques to generate seen im-
ages from 40 Image Net classes [4]. Thoughtviz [13] encouraged
the design of conditional GAN (cGAN) to decode EEG signals us-
ing a small dataset consisting of imagination tasks comprising dig-
its, characters, and objects. Several architectures have been devel-
oped using CNN and LSTM on the time-series data of most bio-
logical areas. The capability of LSTM for identifying the sequen-
tial pattern and CNN to locate the neighborhood features was re-
cently combined with spectral normalization generative adversarial
network (SNGAN) to yield seen images from EEG encodings [14].
Researchers are putting effort into reconstructing geometrical shapes
from brain activities, primarily in generating precise edges and other
low-level details. Further advancement in GAN leads to synthesiz-
ing natural geometrical shapes, which enforces semantic alignment
constraints to construct natural shapes at pixel-level [15, 16]. Re-
cently, a siamese network was utilized to maximize the relationship
between extracted manifold brain feature representation and visual
features [17]. The obtained representation demonstrated better im-
age classification and saliency detection performance on the learned

1https://github.com/prajwalsingh/EEG2Image
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Fig. 1. This figure illustrates the proposed framework for EEG feature extraction and image generation. a) Shows the LSTM network with
128 hidden units that transforms EEG signal into 128D feature vector. b) Shows the GAN network with a data augmentation block that
prevents the discriminator from memorizing the small dataset and helps the generator synthesize high-quality images.

Fig. 2. t-SNE [20] visualization of Object test dataset [21] EEG
feature space which is learned using label supervision with test clas-
sification accuracy 0.75 and k-means accuracy 0.18.

manifold. Khare et al. proposed conditional progressive growing
of GANs (CProGAN) to develop perceived images [18] and showed
higher inception than previous related work. Recent work on con-
trastive self-supervised approach has been shown to maximize the
mutual information between visual stimulus and corresponding EEG
latent representations [19]. They proposed an approach that em-
ployed cross-modal alignment enforcing image retrieval at the in-
stance level rather than pixel-level generation.

3. PROPOSED METHOD

In this work, we proposed a framework shown in Fig.1, for visual-
izing the brain activity EEG signals. The framework consists of a
two-phase approach: 1) extracting good features from the EEG sig-
nals with a contrastive learning approach and 2) a conditional data-
efficient GAN to transform the extracted EEG features to image. In
our case, a good feature implies useful information about an image
that can help GAN to reconstruct that image.

Feature Extraction. Recent works [17] have shown that the
contrastive learning-based approach outperforms the supervised set-
ting in the case of generalized feature learning for downstream tasks
such as object detection, classification, saliency map from EEG sig-
nals, etc. Building on this, we have used a triplet loss-based con-
trastive learning [10] approach in the proposed framework for EEG
feature learning. Triplet loss aims to minimize the distance between
the two data with the same labels and maximize the distance between

Fig. 3. t-SNE [20] visualization of Object test dataset [21] EEG fea-
ture space which is learned using triplet loss with test k-means ac-
curacy 0.53. Each cluster’s equivalent EEG-based generated images
are also visualized in this plot.

the two data with different labels. To prevent the feature extraction
network from squashing the representation of each data into a small
cluster, a margin term is used in triplet loss. It ensures that the dis-
tance between the feature of the same label data is close to zero and
greater than the margin for different label data. The formulation of
triplet loss is as follows:

min
θ

E
[
||fθ(xa)− fθ(xp)||22 − ||fθ(xa)− fθ(xn)||22 + β

]
(1)

where, f is parameterized function on θ that maps EEG signals to
a feature space i.e. fθ : RC×T −→ R128. The goal of Eqn. 1 is to
minimize the distance between anchor (a) EEG signal and positive
(p) EEG signal of the same class as the anchor and maximize the
distance between anchor EEG signal and negative (n) EEG signal of
different class with margin distance. This formulation is also known
as metric learning or contrastive learning. The idea behind using
the formulation is to ensure that the EEG signals generated by the
brain activity for similar images should be close to each other in the
learned feature space [22]. For learning better features, we have used
semi-hard hard triplets, where the distance of the negative sample is
more than positive but less than the margin, and also used an online
hard-triplet mining strategy similar to [10].

Image Generation. In the proposed framework, we have used
a Generative Adversarial Network (GAN) [23] to synthesize the im-
age from the extracted EEG feature. A GAN architecture consists



(a) ThoughtViz [13] (b) EEG2Image (Ours)

Fig. 4. Qualitative comparison between the images generated by
EEG signals using the ThoughtViz method (left) and our proposed
framework (right). Images in the red bounding box are the sample
images from the Object test dataset [21]. These images are visual-
ized by the participants, and the respective brain activity EEG signals
is used here for reconstruction.

Method Inception Score
AC-GAN [24] 4.93
ThoughtViz [13] 5.43
EEG2Image (Ours) 6.78

Table 1. Comparison of Inception Score values (on all classes of
Object dataset [21]).

of two sub-networks: Generator (G) and Discriminator (D). The
purpose of a Generator is to learn the transformation between a la-
tent distribution (pZ) and real-world data distribution (pdata). In our
case, we assume latent distribution as an isotropic GaussianN (0, I)
from which we sample a noise vector z ∈ R128. The discrim-
inator learns to distinguish real images from synthesized images.
The complete GAN architecture is trained in a min-max optimiza-
tion setting. Where the discriminator tries to maximize the score
for real images D(x) and minimize the score for generated images
D(G(z)), in contrast to the discriminator, the generator tries to min-
imize (1−D(G(z)) and the minimizing of the term is only possible
if generator synthesizes photorealistic images. The complete GAN
optimization process can also be represented below:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ex∼pZ(z)
[log(1−D(G(z))))] (2)

Similar to [13], we aim to develop a framework that can utilize
a small-size EEG dataset for generating images from EEG signals.
To overcome the problem of small dataset [13] has used the train-
able weighted Gaussian layer [25], which learns the mean (µ) and
variance (σ) for the encoded EEG signal. In this work, we follow
a different strategy than [13]. Instead, we have used a Conditional
DCGAN [26] architecture with the following modification 1) fol-
lowing the work of [27], we have used hinge loss for stable train-
ing of GAN, 2) we have added a differentiable data augmentation
block between generator and discriminator which helps the network
in learning from small datasize [12], and 3) to ensure the mode di-

(a) ThoughtViz [13] (b) EEG2Image (Ours)

Fig. 5. Qualitative comparison between the images generated by the
ThoughtViz method (left) and our proposed framework (right). Im-
ages in the red bounding box are the sample images from the Charac-
ter test dataset [21], these images are visualized by the participants,
and the respective brain activity EEG signals is used here for recon-
struction.

versity of GAN we have also used a mode seeking regularization
as proposed in work [11]. In work [27], Lim et al. have shown
that the vanilla formulation of GAN suffers from mode collapse and
unstable training problems. To solve these issues, they formulated
an SVM separating hyperplane approach, which is known as GAN
Hinge Loss as below:

LD = Ex∼pdata(x)[max(0, 1−D(x))] +

Ex∼pZ(z)
[max(0, 1 +D(G(z)))] (3)

LG = −Ex∼pZ(z)
[D(G(z))] (4)

Training a GAN for synthesizing photorealistic images requires
a large number of data [12], and other deep learning approaches also
face the same data scarcity issues. Zhao et al. [12] in their work have
shown that the problem of sparse data for training a GAN can be
resolved by adding a Differentiable Data Augmentation (DiffAug)
block between the generator and discriminator, which is illustrated
in Fig.1(b). The issue with sparse data is discriminator can easily
memorize the data, which causes the vanishing gradient problem for
the generator. The data augmentations we have used for our GAN
network are translation and color jittering. The final loss term we
aim to optimize for the proposed EEG2Image is given below:

LD = E(x,ψ)∼pdata(x)[max(0, 1−D(T (x), ψ))] +

Ex∼pZ(z),ψ∼pdata(x)[max(0, 1 +D(T (G(z, ψ)), ψ))]

(5)

Lms = min
G

(
dI(G(ψ, z1), G(ψ, z2))

dz(z1, z2)

)−1

(6)

LG = −Ex∼pZ(z),ψ∼pdata(x)[D(T (G(z, ψ)), ψ)] + α ∗ Lms
(7)

where LD is discriminator loss, LG is generator loss, Lms is mode
seeking regularizer term [11], T is DiffAugment [12] function, ψ is
EEG feature vector and α is regularizer weight term which kept as
1.0 for all the experiments.

4. EXPERIMENTS AND RESULTS

In the first part of this section, we will discuss the experimental setup
we used to train the feature extraction and generative network, in-
cluding the dataset. Later in this section, we will discuss all the
ablation studies done to justify choices for the proposed framework.



(a) no modeloss and dataaug,
inception score 3.61.

(b) with modeloss and no dataaug,
inception score 4.27.

(c) no modeloss and with dataaug,
inception score 6.5.

Fig. 6. Ablation study showing the qualitative result on Object dataset [21] using different loss combinations for training the GAN network.

Object Class Apple
(n07739125)

Car
(n02958343)

Dog
(n02084071)

Gold
(n03445326)

Mobile
(n02992529)

Rose
(n12620196)

Scooter
(n03791053)

Tiger
(n02129604)

Wallet
(n04548362)

Watch
(n04555897) All

Mean 6.09 6.15 6.99 6.98 7.33 5.44 5.81 5.67 6.48 6.67 6.78
SD 0.05 0.084 0.031 0.082 0.030 0.089 0.077 0.057 0.086 0.037 0.086

Table 2. Mean and standard deviation (SD) of Inception scores for each class of Objects dataset [21].

Datasets. We have used the EEG data from [21]. This dataset
consists of EEG signals for 3 different subjects: Digits, Characters,
and Objects. In our study, we have only used Characters and Ob-
ject data because these are more diverse and complex data to show
the effectiveness of the proposed framework. The Characters dataset
consists of ten English alphabet classes and the subset of Chars74K
[28]. Similarly, the Objects dataset consists of ten different object
classes and the subset of ImageNet [29]. While collecting brain ac-
tivity EEG signals of the participants, they were asked to think about
one of these characters/objects at a time. To record the EEG signals,
Emotiv EPOC+ [30] device is used, which has 14 channels with a
sampling rate of 128 Hz per channel. For each dataset, 23 partici-
pants were asked to visualize every ten classes. Thus we have 230
EEG samples per dataset. For our work, we have used the EEG data
provided by the authors with train-test splits [13]. We would like to
thank the authors for making it publicly available.

EEG2Feature. The first stage of our proposed framework is to
convert EEG signals into useful features for image generation. For
this, we design two regimes. In the first regime, we train a classi-
fication network for extracting EEG features as done in [13]. The
classifier is a LSTM [31] network with 128 hidden units using soft-
max cross-entropy loss. We use k-means clustering [32] as a metric
for the learned EEG feature, i.e., higher k-means accuracy implies
better learned representation [22]. The first regime gives us 74.3%
& 75.4% classification accuracy on test data of Object dataset &
Character dataset [21] and k-means accuracy of 17.8% and 16.3%,
further we plot t-SNE map [20] to visualize the clustering of test
data features from Object dataset in Fig. 2. For the second regime,
we used a contrastive learning approach to learning the feature of an
EEG signal. As discussed in the Sec. 3 we used semi-hard triplet
loss for training the LSTM [31] network with 128 hidden units. The
goal of triplet loss is to structured the feature space in such a way
that positive pairs are in close proximity to each other while nega-
tive pairs are positioned far apart. The k-means accuracy we got on
the test data of the Object dataset is 53%, and the Character dataset
is 49%. Further, we plot t-SNE map [20] to visualize the clustering
of test data features from Object dataset Fig. 3. We can see that the
k-means accuracy and t-SNE plot are better for the second regime.
Therefore we decided to use the contrastive learning method as an

EEG feature extractor for our proposed framework.
Feature2Image. The second stage of our proposed framework

is to synthesize photorealistic images from extracted EEG features
using the first stage. For synthesizing the image, we have used Con-
ditional DCGAN [26] with modification as discussed in Sec. 3. We
have used Inception Score (IS) [33] as a metric for image quality
comparison with other methods. Table 1 shows our proposed GAN
method performed better in synthesizing the images from less num-
ber of EEG data. In Table 2 we have shown per class inception score
for test data of Object dataset [21]. We also performed the qualitative
analysis of synthesized images for both the dataset Object and Char-
acter, which are shown in Figs. [4, 5]. We have performed several
ablation studies to verify the importance of each loss in training the
GAN network for the proposed framework. For that, we trained the
proposed conditional GAN (cGAN) for three different regimes on
the Object dataset [21]. In the first regime, we train the cGAN with-
out mode seeking regularization and DiffAugment, shown in Fig.
6(a). which has an inception score of 3.61. In the second regime, we
have added a mode seeking regularization term only and trained the
cGAN from scratch, Fig. 6(b) shows improvement with an inception
score of 4.27. In the third and last regime, we train the cGAN with
the DiffAugment block, showing a large improvement in the syn-
thesized image as shown in Fig. 6(c) with an inception score of 6.5.
Based on these experiments, we used both the mode-seeking regular-
ization term and the DiffAugment block in the proposed framework.

5. CONCLUSION

This work proposes a framework that uses a small-sized dataset for
generating images from brain activity EEG signals. Our proposed
framework has a better inception score than the previously proposed
method for the small-sized EEG dataset and synthesized images of
size 128×128. The framework consists of a contrastive learning ap-
proach to learn the good features of EEG data, which is empirically
shown to perform better than the softmax-based supervised learn-
ing method. We have performed several ablation studies to demon-
strate the effectiveness of modified GAN loss function in synthesiz-
ing high-quality images. As future work, we plan to tackle large-size
EEG datasets and approach for complete self/un-supervised learning
for extracting features from EEG data and image synthesis.
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