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ABSTRACT

Transformer-based pre-trained models have achieved great improve-
ments in semantic matching. However, existing models still suffer
from insufficient ability to capture subtle differences. The modifi-
cation, addition and deletion of words in sentence pairs may make
it difficult for the model to predict their relationship. To alleviate
this problem, we propose a novel Dual Path Modeling Framework to
enhance the model’s ability to perceive subtle differences in sentence
pairs by separately modeling affinity and difference semantics. Based
on dual-path modeling framework we design the Dual Path Modeling
Network (DPM-Net) to recognize semantic relations. And we con-
duct extensive experiments on 10 well-studied semantic matching and
robustness test datasets, and the experimental results show that our
proposed method achieves consistent improvements over baselines.

Index Terms— dual path modeling, semantic matching, neural
language processing, deep learning

1. INTRODUCTION

Semantic Sentence Matching (SSM) is a fundamental NLP task.
It’s goal is to compare two sentences and identify their semantic
relationship. In paraphrase identification, SSM is used to determine
whether two sentences are paraphrase or not [1]. In natural language
inference task, SSM is utilized to judge whether a hypothesis sentence
can be inferred from a premise sentence [2]. In the answer sentence
selection task, SSM is employed to assess the relevance between
query-answer pairs and rank all candidate answers [3].

Across the rich history of semantic sentence matching research,
there have been two main streams of studies for solving this problem.
One is to utilize a sentence encoder to convert sentences into low-
dimensional vectors , and apply a parameterized function to learn
the matching scores between them [3]. Another paradigm adopts
attention mechanism to calculate scores between tokens from two
sentences, and then the matching scores are aggregated to make a
sentence-level decision [4, 5]. In recent years, pre-trained models,
such as BERT [6], RoBERTa [7], have became much more popular
and achieved outstanding performance in SSM.

Although previous studies have provided some insights, existing
models still suffer from insufficient ability to capture subtle differ-
ences. Figure 1 demonstrates a case suffers from this problem. Al-
though the sentence pairs in this figure are semantically different, they
are too similar in literal for those pre-trained language models to dis-
tinguish accurately. An important reason is that although the model
can measure the matching degree in global semantics, it ignores the
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Fig. 1. The Dual Path Modeling Framework for semantic matching.
S1 and S2 are sentence pairs misclassified by BERT.

local subtle differences between texts. Because for text pairs with
highly similar matching words, the overall semantic difference is
often caused by different local differences. Furthermore, existing text
matching models based on pretrained models are directly fine-tuned
with the training data. It makes the model incapable of generalizing to
text matching tasks with highly similar text formats, ultimately result-
ing in the model lacking the ability to capture fine-grained differences
between new samples. Inspired by Sparsegen [8], we hypothesize that
a more flexible model structure can help the model better understand
the relationship of sentence pairs. In this paper, we focus on explor-
ing the modeling of affinity and difference between texts to enhance
the model’s ability to understand fine-grained semantic differences,
thereby improving the performance of text matching tasks. Therefore,
two systemic questions arise naturally:

Q1: How to equip the model with the ability to model the
affinity and difference between sentence pairs? We analyse that
different kinds of attention are complementary clues for sentence
matching, which can capture different levels of information in the
text sequence. In this paper, we propose a dual attention module
including a difference attention accompanied with the affinity at-
tention. Affinity attention and difference attention aggregate word-
and phrase-level interactions using dot-product cross-attention and
subtraction-based cross-attention. And finally obtain semantic repre-
sentations describing the affinity and difference, respectively.

Q2: How to fuse two types of semantic representations into
a unified representation? We observe that simple aggregation with
fixed or average importance weights may be detrimental to fusing
heterogeneous vectors. We propose to adaptively aggregate the rep-
resentations obtained by multiple attention functions from two per-
spectives. Firstly, the internal aggregation aggregates the matching
information together with each word in the sentence in each atten-
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tion function. Secondly, external aggregation combines the matching
information of all attention functions. The output final vectors can
better describe the matching details of sentence pairs.

The main contributions of this work can be summarized as fol-
lows. First, we conduct an in-depth analysis of the subtle differences
in semantic matching and propose a new dual-path modeling frame-
work. Second, the proposed DPM-Net based DPM framework can
effectively exploits and aggregates two complementary attention mod-
els, such that the intrinsic complex relationship between sentence
pairs can be fully discovered for effective semantic matching. Finally,
we conduct intensive experiments on 10 matching datasets and robust-
ness testing datasets, and the results show that our method achieves
consistent improvements across both architectures (representation-
based and interaction-based).

2. RELATED WORK

2.1. Semantic Sentence Matching

Semantic Sentence Matching is a fundamental task in NLP. In re-
cent years, thanks to the appearance of large-scale annotated datasets
[2], neural network models have made great progress in SSM [9],
mainly fell into two categories. The first one [10] focuses on en-
coding sentences into corresponding vector representations without
any cross-interaction and applies a classifier layer to obtain similar-
ity. The second one [11, 4] utilizes cross-features as an attention
module to express the word-level or phrase-level alignments, and ag-
gregates these integrated information to acquire similarity. Recently,
the shift from neural network architecture engineering to large-scale
pre-training has achieved outstanding performance in SSM and many
other tasks. Meanwhile, leveraging external knowledge [12, 13] to
enhance PLMs has been proven to be highly useful for multiple NLP
tasks. Therefore, recent work attempts to integrate external knowl-
edge into pre-trained language models, such as AMAN, SemBERT,
UERBERT, and so on [14, 15, 16, 17, 18, 19, 20].

2.2. Robustness Test

Although neural network models have achieved human-like or even
superior results in multiple tasks, they still face the insufficient ro-
bustness problem in real application scenarios [21]. Tiny literal
changes may cause misjudgments. Especially in some cases where
fine-grained semantic needs to be discriminated. Besides, most of
the current work utilizes one single metric to evaluate their model,
may overestimate model capability and lack a fine-grained assess-
ment of model robustness [21]. Therefore, recent work starts to focus
on robustness research from multiple perspectives. TextFlint [21]
incorporates multiple transformations to provide comprehensive ro-
bustness analysis. [22] provide an overall benchmark for current
work on adversarial attacks. And [23] propose a more comprehensive
evaluation system and add more detailed output analysis indicators.

3. TASK DEFINITION

Formally, we can represent each example of sentence pairs as a triple
(Q, P, y), where Q = (q1, ..., qN ) is a sentence with a length N, P =
(p1, ..., pM ) is another sentence with a length M, and y ∈ Y is the
label representing the relationship between Q and P. Take natural
language inference task as an example, Q is a premise sentence, P is a
hypothesis sentence,and y=entailment, contradiction, neutral, where
entailment indicates P can be inferred from Q, contradiction indicates

P cannot be the true condition on Q, and neutral means P and Q are
irrelevant to each other.
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Fig. 2. The overall architecture of the DPM-Net.

4. METHOD

We show the design of the Dual Path Modeling Network in Figure 2. It
consists of three parts under the dual path modeling framework. First,
We use encoder(eg, transformer, Bert , Roberta) to obtain the context
representation of two sentences through representation-based method
or interaction-based method. Second, we use two different types of
attention functions to model the interaction of sentence pairs from
different perspectives. Next, we aggregate the matching information
along with words in P an Q in two steps. We propose to adaptively
aggregate representations obtained by dual attention functions from
two perspectives. First, internal aggregation aggregates matching
information with each word in the sentence in each attention function.
Second, external aggregation combines the matching information
of all attention features. We apply an aggregation mechanism to
adaptively aggregate the two representations. Finally, we apply a
Multilayer Perceptron (MLP) classifier for the final decision.

4.1. Encoder Layer

For sentence pairs S1={wp
t }Nt=1 and S2={wq

t }Nt=1, we first convert
the sentences into vector representations using an encoder. Since we
want to explore the performance of DPM on representation-based and
interaction-based methods, we use two methods to obtain text repre-
sentations, respectively. The difference between the two methods is
shown in Figure 3, taking Bert as an example. We then use a encoder
to produce new representation Q={q1,...,qn} and P={p1,...,pn} of all
words in two sentences respectively.

sentence1

Encoder Encoder

sentence2

(a) Representation-based

sentence1 + sentence2

Encoder

(b) Interactive-based

Fig. 3. The difference of the two types of encoders.



At the same time, we concatenate the obtained two represen-
tations and perform linear transformation on them, and finally get
V={v1,...,vn}, Where N is the length after the text padding.

4.2. Dual Attention Module

In dual attention module, we use two different attention functions to
model the semantic relationship between sentence pairs from different
perspectives. The input of the dual attention module is a triple of
P , Q, V ∈ Rdseq×dv , where dv is the latent dimension, dseq is the
length of the utterance. We use pi, qi and vi to denote the i-th tokens
of P , Q, and V respectively.

4.2.1. Dot Attention

Dot attention is the most commonly used attention mechanism in
semantic correlation modeling. And it follows the standard dot-
product attention that the transformer operates by default. For the
sake of simplicity, the formulations of it not be repeated here, please
refer to [6] for more details. We denote the output vector as:

stj = qj � vt, ati =
exp(sti)∑N

j=1 exp(s
t
j)
, qd

t =
N∑
i=1

atiqi (1)

where qd
t ∈ R1×dv is the output of the t-th position obtained after

the dot attention calculation and � is element-wise dot product.

4.2.2. Subtract Attention

The second part of dual attention module is the subtract attention that
captures and aggregates the difference information between sentence
pairs. It allows the model to pay attention to dissimilar parts between
sentence pairs by element-wise subtraction as:

stj = tanh(Wm(qj − vt)), a
t
i =

exp(sti)∑N
j=1 exp(s

t
j)
,qs

t =

N∑
i=1

atipi (2)

where qs
t ∈ R1×dv is the output of the t-th position obtained after

the minus attention calculation, and Wm ∈ Rdseq×dv are trainable
parameters.

4.3. Composition Module

The composition module is divided into two stages, one is internal
aggregation and the other is external aggregation.

4.3.1. Internal Aggregation

Internal aggregation is to integrate the representation obtained after
attention with the original representation. For each position t, we
concatenate vt with the representation qct obtained by attention, and
then use gating to scale the overall information,c = (d,s). As shown
below, This is an example of internal integration of dot attention:

xd
t =

[
qdt , vt

]
, gi = σ

(
Wgx

d
t

)
(3a)

xd∗
t = gi � xd

t , hd
t = tanh(Wdx

d∗
t + bd) (3b)

For dot and subtract attention, we will also get hd
t and hs

t , respec-
tively. Where Wg ∈ R1×2dv , Wd ∈ Rdv×2dv , ba are weights and
bias of our model.

4.3.2. External Aggregation

External aggregation is to fuse all the attention functions. We use
a parameter vi as an input to adaptively fuse two different attention
mechanisms.

sj = vT tanh(W1h
t
j +W2vj)(t = d, s) (4a)

ai =
exp(si)∑

j=(d,s) exp(sj)
, xt =

∑
i=(d,s)

aih
i
t (4b)

X={x1,...,xN} is the final fused semantic feature. Finally, we
feed X into a multilayer perceptron (MLP) classifier for the proba-
bility pi of each label in the corresponding task. For all tasks, the
objective function is to minimize the following cross entropy:

L =

N∑
i=1

[yi log pi + (1− yi) log(1− pi)] (5)

where yi denotes a label, in paraphrase detection it is (0, 1) ,
in natural language inference it is the relation of two sentences of
entailment, contradiction, and neutral.

5. EXPERIMENTS AND RESULTS

5.1. Datasets and Baselines

Datasets We conduct experiments on 10 sentence matching datasets
to evaluate the effectiveness of our method. The GLUE [25] bench-
mark is a widely-used dataset in thie field, which includes tasks such
as sentence pair classification, similarity and paraphrase detection,
and natural language inference1. We conduct experiments on 6 sen-
tence pair datasets (MRPC, QQP, STS-B, MNLI, RTE, and QNLI)
from GLUE. We also conduct experiments on 4 other popular datasets
(SNLI, SICK, TwitterURL and Scitail). Furthermore, we tested the
robustness of DPM using the Textflint[21] tools.
Baselines To evaluate the effectiveness of our proposed DPM in SSM,
we mainly introduce BERT [6] and RoBERTa[7] for comparison. In
addition, we also take competitive model transformer[24] without
pre-training as baseline. In robustness experiments, we compare the
performance of BERT on the robustness test datasets. For simplicity,
the compared models are not described in detail here.

5.2. Results and Analysis

To evaluate the effectiveness of our method, we test the effectiveness
of aggregating DPM in interaction-based and representation-based
methods, respectively.

Firstly, we integrate DPM based on interaction-based methods.
Table 1 shows the performance of DPM and competitive models on
10 datasets. It can be seen that the effect of non-pre-trained models
is significantly worse than pre-trained models. This is mainly be-
cause the pre-trained model has more data from learning corpus and
powerful information extraction ability. When the backbone model
is BERT-base or BERT-large, the average accuracy after integrating
DPM is improved by 1.1% and 0.7%, respectively. The results show
the effectiveness of our DPM framework on semantic matching tasks.
Furthermore, our method outperforms RoBERTa-base by 1.5% and
RoBERTa-large by 0.6%, respectively. which demonstrates that DPM
can effectively capture the relationship between sentences from dif-
ferent aspects, so that more fine-grained and complex relationships
can be exploited. Besides, the aggregated representation module can
effectively fuse information from different attention modules.

Secondly, to verify the generalization performance of our method,
we also test aggregated DPM among representation-based methods.
The baseline model has the same settings as Sentence-BERT[26]. The
results are shown in Table 2. It can be seen that the representation-
based method performs significantly worse than the interaction-based
model.This is mainly because interaction-based methods can learn
the alignment between phrases in a sentence and can better model
sentence-pair relationships. And in the Scitail dataset, due to the

1https://huggingface.co/datasets/glue



Table 1. Performance comparison of integrating DPM-Net in interaction-based methods on 10 Semantic Matching Benchmarks.
Model Pre-train MRPC QQP STS-B MNLI-m/mm QNLI RTE SNLI Sci SICK Twi Avg
Transformer†[24] % 81.7 84.4 70.4 72.3/71.4 80.3 58.1 81.7 70.6 - - -
Transformer+DPM(ours)† % 81.9 85.1 71.8 72.7/72.4 80.9 59.4 85.2 77.3 - - -
BERT-Base†[6] ! 87.2 89.1 87.8 84.3/83.7 90.4 67.2 90.7 91.8 87.2 84.8 85.8
BERT-Base+DPM(ours)† ! 89.2 89.5 89.3 85.2/84.8 91.0 68.8 91.2 92.4 87.9 96.6 86.9
BERT-Large†[6] ! 88.9 89.3 86.6 86.8/86.3 92.7 70.1 91.0 94.4 91.1 91.5 88.0
BERT-Large+DPM(ours)† ! 89.6 89.7 88.3 86.9/86.7 93.2 72.5 91.4 94.5 91.4 92.0 88.7
RoBERTa-Base†[7] ! 89.3 89.6 87.4 86.3/86.2 92.2 73.6 90.8 92.3 87.9 85.9 87.6
RoBERTa-Base+DPM(ours)† ! 89.9 91.0 88.6 87.6/87.2 93.6 81.1 91.5 93.7 89.3 87.3 89.1
RoBERTa-Large†[7] ! 89.4 89.7 90.2 89.5/89.3 92.7 83.8 91.2 94.3 91.2 91.9 90.3
RoBERTa-Large+DPM(ours)† ! 90.2 91.3 90.8 90.2/90.1 94.0 84.2 91.8 94.8 90.8 92.3 90.9

Table 2. Performance comparison of integrating DPM-Net in representation-based methods on 10 Semantic Matching Benchmarks.
Model Pre-train MRPC QQP STS-B MNLI-m/mm QNLI RTE SNLI Sci SICK Twi Avg
Transformer†[24] % 71.5 79.6 66.2 66.7/66.5 75.8 59.2 74.3 69.9 - - -
Transformer+DPM(ours)† % 73.4 83.2 69.4 68.3/68.2 77.7 59.8 80.1 72.4 - - -
BERT-Base†[6] ! 81.4 82.6 81.3 78.8/78.4 84.4 60.2 83.3 89.8 80.9 79.1 80.4
BERT-Base+DPM(ours)† ! 83.6 84.4 85.1 79.6/79.4 86.0 63.6 86.1 90.9 82.5 82.7 82.1
BERT-Large†[6] ! 82.5 83.4 83.8 80.3/79.9 86.1 67.9 86.8 90.6 84.2 81.7 82.5
BERT-Large+DPM(ours)† ! 83.3 84.9 86.3 81.6/81.1 87.5 70.1 87.2 91.3 84.9 83.7 83.8
RoBERTa-Base†[7] ! 82.3 82.7 82.2 79.1/78.9 85.8 65.6 84.5 90.6 82.4 81.6 81.4
RoBERTa-Base+DPM(ours)† ! 83.9 85.2 85.9 79.5/79.3 87.1 67.7 86.8 91.5 82.9 82.8 82.9
RoBERTa-Large†[7] ! 83.4 83.8 84.2 81.3/81.1 86.5 68.9 87.6 91.2 84.8 82.6 83.2
RoBERTa-Large+DPM(ours)† ! 84.1 85.9 87.5 82.4/82.2 88.0 71.3 88.4 92.5 85.6 84.8 84.7

small amount of training set data in Scitail, the variance of the model
prediction results is large. However, DPM-Net still shows very com-
petitive performance on the Scitail dataset. Furthermore, DPM-Net
outperforms vanilla Bert and other competing models on almost all
datasets. Those improvements demonstrate the benefit of dual-path
modeling for mining semantics.

Overall, consistent conclusions can be drawn from these results.
Compared with previous work, our method shows very competitive
performance in judging semantic similarity, and the experimental
results also confirm our method.

Fig. 4. The robustness experiment with DPM-Net on SNLI dataset .

5.3. Robustness Test Performance

We conducted robustness tests on SNLI dataset. Table 4 lists the accu-
racy of DMP-Net and baseline model. We can observe that SwapAnt
leads to a drop in maximum performance, and our model outper-
forms Bert nearly 10% on SwapAnt, which indicates that DMP-Net
can better handle semantic contradictions caused by antonyms. And
the model performance drops to 76.2% on SwapSyn transformation,
while DPM-net outperforms BERT by nearly 5% because it requires
the model to capture subtle entity differences for correct linguistic
inference. In other transformations, DPM-Net still better than base-
line, which reflects the advantages of dual path modeling in capturing
subtle differences.

Table 3. Results of component ablation experiment.

Model Quora QNLI

Dev Test Dev Test

DPM-Net 85.6 84.4 88.3 86.0
w/o Dot-attention 84.5 83.2 87.1 84.9
w/o Subtract-attention 85.1 83.5 87.3 85.2
w/o Dual Attention 83.9 82.8 86.5 84.7
w/o Internal Fusion 85.3 83.8 87.7 85.6
w/o External Fusion 85.4 83.9 87.9 85.7

5.4. Ablation Study

The experimental results are shown in the table 3. First, remove dual
Attention or remove the subcomponents in dual attention, the perfor-
mance of the model on both datasets is significantly decreased. Which
demonstrates the effectiveness of the internal components of the dual
attention module. Next, after removing internal fusion or external
fusion, the performance of the model decreases by 0.5% and 0.6%,
which proves that dynamic aggregation according to different weights
can further improve the performance of the model. Overall, due to
the effective combination of each component, DPM-Net can adap-
tively fuse difference features into models and leverage its powerful
contextual representation to better inference about semantics.

6. CONCLUSION

In this paper, we propose a novel Dual Path Modeling Network
(DPM-Net), which can efficiently aggregate the difference informa-
tion in sentence pairs. DPM-Net enables the model to learn more
fine-grained comparative information and enhances the sensitivity
of models to subtle differences. Experimental results show that our
method can achieve better performance than several strong baselines.
Since DPM-Net is an end-to-end training component, it is expected
to be applied to other large-scale pre-trained models in the future.
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Canada: Association for Computational Linguistics, Jun. 2012,
pp. 182–190. [Online]. Available: https://aclanthology.org/
N12-1019

[2] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A
large annotated corpus for learning natural language inference,”
arXiv preprint arXiv:1508.05326, 2015.

[3] S. Wang, Y. Lan, Y. Tay, J. Jiang, and J. Liu, “Multi-level head-
wise match and aggregation in transformer for textual sequence
matching,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 05, 2020, pp. 9209–9216.

[4] Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, and D. Inkpen,
“Enhanced lstm for natural language inference,” arXiv preprint
arXiv:1609.06038, 2016.

[5] Y. Tay, L. A. Tuan, and S. C. Hui, “A compare-propagate ar-
chitecture with alignment factorization for natural language
inference,” arXiv preprint arXiv:1801.00102, vol. 78, p. 154,
2017.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A ro-
bustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[8] A. Martins and R. Astudillo, “From softmax to sparsemax: A
sparse model of attention and multi-label classification,” in
International conference on machine learning. PMLR, 2016,
pp. 1614–1623.

[9] X. Qiu and X. Huang, “Convolutional neural tensor network ar-
chitecture for community-based question answering,” in Twenty-
Fourth international joint conference on artificial intelligence,
2015.

[10] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bor-
des, “Supervised learning of universal sentence representa-
tions from natural language inference data,” arXiv preprint
arXiv:1705.02364, 2017.

[11] D. Liang, F. Zhang, Q. Zhang, and X.-J. Huang, “Asynchronous
deep interaction network for natural language inference,” in Pro-
ceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP),
2019, pp. 2692–2700.

[12] G. A. Miller, “Wordnet: a lexical database for english,” Com-
munications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[13] O. Bodenreider, “The unified medical language system (umls):
integrating biomedical terminology,” Nucleic acids research,
vol. 32, no. suppl 1, pp. D267–D270, 2004.

[14] D. Liang, F. Zhang, W. Zhang, Q. Zhang, J. Fu, M. Peng, T. Gui,
and X. Huang, “Adaptive multi-attention network incorporating
answer information for duplicate question detection,” in Pro-
ceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2019, pp.
95–104.

[15] Z. Zhang, Y. Wu, H. Zhao, Z. Li, S. Zhang, X. Zhou, and
X. Zhou, “Semantics-aware bert for language understanding,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 05, 2020, pp. 9628–9635.

[16] Y. Liu, D. Liang, F. Fang, S. Wang, W. Wu, and R. Jiang,
“Time-aware multiway adaptive fusion network for tempo-
ral knowledge graph question answering,” arXiv preprint
arXiv:2302.12529, 2023.

[17] T. Xia, Y. Wang, Y. Tian, and Y. Chang, “Using prior knowledge
to guide bert’s attention in semantic textual matching tasks,” in
Proceedings of the Web Conference 2021, 2021, pp. 2466–2475.

[18] J. Bai, Y. Wang, Y. Chen, Y. Yang, J. Bai, J. Yu, and Y. Tong,
“Syntax-bert: Improving pre-trained transformers with syntax
trees,” arXiv preprint arXiv:2103.04350, 2021.

[19] S. Wang, D. Liang, J. Song, Y. Li, and W. Wu, “Dabert: Dual
attention enhanced bert for semantic matching,” in Proceed-
ings of the 29th International Conference on Computational
Linguistics, 2022, pp. 1645–1654.

[20] J. Song, D. Liang, R. Li, Y. Li, S. Wang, M. Peng,
W. Wu, and Y. Yu, “Improving semantic matching through
dependency-enhanced pre-trained model with adaptive fusion,”
in Findings of the Association for Computational Linguistics:
EMNLP 2022. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022, pp. 45–57. [Online].
Available: https://aclanthology.org/2022.findings-emnlp.4

[21] T. Gui, X. Wang, Q. Zhang, Q. Liu, Y. Zou, X. Zhou, R. Zheng,
C. Zhang, Q. Wu, J. Ye et al., “Textflint: Unified multilingual
robustness evaluation toolkit for natural language processing,”
arXiv preprint arXiv:2103.11441, 2021.

[22] Z. Li, J. Xu, J. Zeng, L. Li, X. Zheng, Q. Zhang, K.-W. Chang,
and C.-J. Hsieh, “Searching for an effective defender: Bench-
marking defense against adversarial word substitution,” arXiv
preprint arXiv:2108.12777, 2021.

[23] P. Liu, J. Fu, Y. Xiao, W. Yuan, S. Chang, J. Dai, Y. Liu, Z. Ye,
Z.-Y. Dou, and G. Neubig, “Explainaboard: An explainable
leaderboard for nlp,” arXiv preprint arXiv:2104.06387, 2021.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017,
pp. 5998–6008.

[25] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman, “Glue: A multi-task benchmark and analysis plat-
form for natural language understanding,” arXiv preprint
arXiv:1804.07461, 2018.

[26] N. Reimers and I. Gurevych, “Sentence-bert: Sentence
embeddings using siamese bert-networks,” CoRR, vol.
abs/1908.10084, 2019. [Online]. Available: http://arxiv.org/abs/
1908.10084

https://aclanthology.org/N12-1019
https://aclanthology.org/N12-1019
https://aclanthology.org/2022.findings-emnlp.4
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

	1  Introduction
	2  Related work
	2.1  Semantic Sentence Matching
	2.2  Robustness Test

	3  Task Definition
	4  Method
	4.1  Encoder Layer
	4.2  Dual Attention Module
	4.2.1  Dot Attention
	4.2.2  Subtract Attention

	4.3  Composition Module
	4.3.1  Internal Aggregation
	4.3.2  External Aggregation


	5  Experiments and Results
	5.1  Datasets and Baselines
	5.2  Results and Analysis
	5.3  Robustness Test Performance
	5.4  Ablation Study

	6  Conclusion

