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ABSTRACT

Given one reference facial image and a piece of speech as
input, talking head generation aims to synthesize a realistic-
looking talking head video. However, generating a lip-synch-
ronized video with natural head movements is challenging.
The same speech clip can generate multiple possible lip and
head movements, that is, there is no one-to-one mapping
relationship between them. To overcome this problem, we
propose a Speech Feature Extractor (SFE) based on memory-
augmented self-supervised contrastive learning, which intro-
duces the memory module to store multiple different speech
mapping results. In addition, we introduce the Mixed Density
Networks (MDN) into the landmark regression task to gen-
erate multiple predicted facial landmarks. Extensive qual-
itative and quantitative experiments show that the quality
of our facial animation is significantly superior to that of
the state-of-the-art (SOTA). The code has been released at
https://github.com/Yaxinzhao97/MACL.git.

Index Terms— Talking head generation, Contrastive
learning, Memory bank, Mixture density networks

1. INTRODUCTION
Talking head generation is crucial to film making [1], audio-
visual speech generation [2] [3], computer games [4], and so
on. Head pose plays an important role in enhancing human
perception of the authenticity of generated video [5].

It was reported that literature [6] [7] [8] directly mapped
speech to talking head videos. [9] [10] first established the
mapping from speech to high-level representations, i.e., the
facial landmarks, and then generated talking head videos
based on the landmarks. Compared with the face pixel im-
age, the facial landmarks are relatively sparse, so we can pay
more attention to capturing the speaker’s head movements.

At present, supervised learning is the mainstream method
of speech feature extraction in talking head generation. Su-
pervised learning method requires large effort to label the
data and the accuracy of the data label cannot be guaranteed,
which makes speech feature extraction easy to be affected by
noisy data. Therefore, we propose to use the self-supervised
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[11] method to extract speech features. Then, the learned
speech features are applied to the downstream task for fine-
tuning, so as to obtain speech features that is more consistent
with the downstream task.

Another challenge is that the mapping of speech to lip and
head movements is not one-to-one. For example, when we
say “Hi”, the degree of mouth opening may be different with
different people. Similarly, the head movements may also
vary. We propose to deal with this uncertainty in two stages.
In the stage of speech features extraction, the memory mod-
ule is introduced into the self-supervised contrastive learning
[12]. Multiple results generated when speech is mapped to
lip and head movements are allocated to the memory module
so that the feature extractor can focus on speech feature ex-
traction. For uncertainty problems, using a single model will
always lead to sub-optimal predictions [13]. Therefore, in the
stage of facial landmark regression, we introduce the mixture
density networks to generate multiple predicted landmarks.

The contributions of our work can be summarized as:

1. We propose a speech feature extraction network based
on memory-augmented self-supervised contrastive
learning to extract speech features.

2. We introduce the mixture density networks into fa-
cial landmarks regression task to generate multiple
predicted facial landmarks, which can improve the
naturalness of generating head movements.

3. Experimental results in multi-speaker scenarios show
that our model is superior to SOTA in terms of land-
marks generation and rhythmic head movements.

2. METHOD

As shown in Fig. 1, our model consists of three key com-
ponents. The first is Speech Feature Extractor (SFE), which
extracts content and identity information from speech signals.
The second is Mixed Density Networks (MDN), which takes
the speech features and the landmark features of the reference
face as input, predicts a variety of possible facial landmarks,
and finally selects the one with the best prediction result as
the output. The last part is the Image2Image network, which
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Fig. 1. Overview of the proposed model. First, we extract the content and identity features from the speech signal through the
SFE. Then we input the extracted features and reference facial landmark features into MDN network to predict facial landmarks.
Each component is a simple multi-layer perceptron. Finally, facial landmarks are converted into photo-realistic facial images
through Image2Image network.

translates facial landmarks into photo-real facial images. We
describe each module of our algorithm in the following sub-
sections.

2.1. Speech Feature Extractor Based on Memory-
augmented Contrastive Learning

The proposed SFE mainly contains three parts: audio en-
coder, image encoder and memory module, as shown in
Fig. 2.

Memory Module. To deal with the one to many mapping
problem of speech to lip and head movements, we introduce
memory module [14] into self-supervised contrastive learning
to store the multiple mapping results.

In detail, the content memory module is denoted asM c =
[mc

1,m
c
2, ...,m

c
k]

T ∈ Rk×C , where k is the size of memory
module and C is the dimension of each memory slot. The
weight of each memory slot was obtained by the content prob-
ability distribution function φc, and then the predicted speech
content feature ŷct was calculated. The formulas are as fol-
lows:

pct = Softmax(φc(ht)), (1)

ŷct =

k∑
i=1

pci,t ·mc
i = pctM

c, (2)

where pci,t ∈ Rk is the contribution of the i-th content
memory slot for the content feature representation at time step
t. ht is the speech feature extracted by Bi-GRU at time step t.

The calculation method of speech identity features ŷst and
content features are similar, but ht obtains the identity weight
vector through the identity weight distribution function φs,
and then performs the product operation with the identity
memory module Ms.

Fig. 2. Overall architecture of the pre-trained SFE. Content
features and identity features are extracted from speech and
image respectively, and the corresponding contrast loss is cal-
culated. Finally, take the upper part, the audio module, as the
audio feature extractor.

Contrastive Loss Functions. By calculating the dis-
tance between the speech features and the image features, the
distance lip-synced speech-image pair is smaller than unsyn-
chronized speech-image pair. Identity contrast loss function
and content contrast loss function are similar in form. The
contrastive loss function between a group of positive sample
pairs are as follows:



Lc = −
1

T

T∑
t=1

log
S(ŷct , y

c
t )∑T

k=1 S(ŷ
c
t , y

c
k)
, (3)

S(ŷct , y
c
t ) = exp(w · cos(ŷct , yct ) + b), (4)

where ŷct is the content feature representation of speech, yct is
the content feature representation of image sequence, t is the
number of frames, and w and b are learnable parameters.

2.2. Facial Landmarks Regression based on Mixture
Density Networks

Most existing works generated single facial landmark by min-
imizing the negative log likelihood of a single Gaussian dis-
tribution, i.e., the mean square error. However, mapping from
speech to head movements and lip movements has significant
uncertainty, so previous works has bottlenecked the accuracy
improvement of face landmarks prediction. For uncertain pre-
diction tasks, mixture density networks is a powerful tool.
This work proposes to estimate multiple facial landmarks by
minimizing the negative log likelihood of mixed Gaussian
distribution. The output of the MDN model is a set of mix-
ing coefficients α and Gaussian kernel parameters (i.e., mean
µ and variance σ). The mean of Gaussian kernel is the gener-
ated facial landmark, and the mixing coefficient and variance
represent the uncertainty of each generated predicted facial
landmark.

Different from the previous methods, instead of directly
generating the final target facial landmarks, we first generate
the aligned target facial landmarks palign, rotation matrix Rr

and offset matrix Rt, and then use the inverse affine transfor-
mation to get the final target facial landmarks, i.e., by sub-
tracting Rt from palign and then multiplying the results with
Rr. This reduces the predictive pressure on the identity fea-
tures in the facial landmarks.

Model Inference. We can use either the mixture of out-
puts by the components or the one with the highest score to
generate the facial landmarks parameters. We try both cases
and found out that using the maximum component leads to
slightly better results.

2.3. Image2Image

Finally, we input target facial landmarks and reference facial
image to generate the final target facial image. We use the
image-to-image translation module in [10] and fine-tune it.

3. EXPERIMENT AND ANALYSIS

3.1. Implementation Details

We train both the speech feature extraction model and facial
landmarks regression model on VoxCeleb2 [15]. It contains
more than 1M utterances from over 6,000 celebrities collected
from around 150K videos on Youtube. The dataset is fairly
gender-balanced (61% male). Our network is implemented

using PyTorch. During the training, we used Adam optimizer,
and all models are trained and tested on a single NVIDIA
Tesla V100. For the image stream, we first extract all the
images in the video, and then extract the landmarks. As for
speech data, the sampling rate is 16KHz. We extract fbank at
the window size of 20ms and hop size of 10ms.

3.2. Comparison with SOTA

We extract identity embeddings for the data in the VoxCeleb1
[16] test set, and evaluate using the self-supervised embed-
dings directly (without any fine-tuning). We compare the re-
sults with those published in the baseline model [17]. As
shown in Table 1, our results are 1.05% lower than the best
result in [18] in terms of the EER evaluation metric, which
indicates that our approach extracts the speech recognition
feature vector effectively.

Table 1. Speaker verification results under VoxCeleb1 test
set. ↓ means the lower the better.

Method EER(%)↓
IL only [17] 23.15
IL + CL [17] 22.59

IL + Disent. loss [17] 22.09
Ours 21.04

We compare our model with two SOTA methods [9]
[10]. The quantitative results are illustrated in Table 2. We
use LMD [18] (Landmark Distance) to measure whether lip
sounds are synchronized, and RD (Rotation Distance) to
measure whether the generated face video has natural head
movements. To further evaluate the quality of the generated
images of different methods, we compare the SSIM [19]
and PSNR [20]. Although MakitTalk exceeds the proposed
method in SSIM and PSNR, it is lower than the proposed
method in generation speed (fps). Note that the image reso-
lution generated by MakeitTalk and our method is 256 × 256,
while that generated by ATVGNet is 128 × 128.

Table 2. Evaluation results under VoxCeleb2 test set. ↑means
the higher the better.

Method LMD↓ RD↓ SSIM↑ PSNR↑ FPS↑
ATVGNet [9] 2.12 0.21 0.81 28.14 34.53

MakeitTalk [10] 7.85 0.08 0.83 29.77 22
Ours 1.83 0.07 0.83 28.91 25.30

As shown in Fig. 3, ATVGNet only focused on gener-
ating facial images without generating natural head move-
ments. While MakeitTalk generates subtle head movements,
the mouth shapes of their model are not accurate. Compared
with these methods, our method generates more natural and
lip-synchronized facial animation.

We visualize the generated results of each component to
study the features learned by each mixture component, as
shown in Fig. 4. The main difference between each com-
ponent is the learned features related to the speaker’s identity,



Fig. 3. Qualitative results produced by ATVGNet [9],
MakeitTalk [10] and Ours. ATVGNet generated facial an-
imation without head movements (as shown in the yellow
box), The lip shape generated by MakeitTalk is inaccurate (as
shown in the red box). Our results have a more pronounced
trend in head movement (as shown in the green box).

including facial contour shapes and head movements. Comp1
learned thin and narrow facial contours, Comp2 learned wide
and fat facial contours, and Comp3 learned random facial
contours. Among them, the facial contour generated by the
component with the largest mixing probability αm is closest
to the real speaker.

Fig. 4. MDNs visualize results for each component. The
red numbers on the right are the mixing coefficient corre-
sponding to each mixing component.

3.3. Ablation Study

For self-supervised contrastive learning, we conduct ablation
experiments to study the contributions of the memory mod-
ule in our full model. For facial landmarks regression model,
we conduct ablation experiments to study the contributions of
the two components in our full model separately: number of
mixture components and facial landmarks regression method.

Memory Module. As shown in Table 3, by comparing the
experimental results with no memory module Ours (wo), only
a single memory module Ours (w), using identity memory
module and content memory module Ours (cs), it is shown
that the memory module has a great effect on the quality of
feature extraction.

Number of Mixture Components. It can be seen from
Table 4. For LMD, when the number of mixture components
M is greater than 3, its value basically does not decrease with
the increase of M . As for RD, when the number of mixture
componentsM is greater than 5, it will not decrease basically.

Table 3. Comparison of results of memory module ablation
experiment in speaker verification.

Method EER(%)↓ LMD↓ RD↓
Ours (wo) 22.12 0.14 0.08
Ours (w) 21.46 0.13 0.07
Ours (cs) 21.04 0.12 0.07

This indicates that each component mainly learns information
related to the speaker’s identity, and more components can
model more different speakers.

Table 4. The influence of the number of mixed components
on LMD.

M 1 2 3 5 8
LMD↓ 0.14 0.13 0.12 0.12 0.12
RD↓ 0.08 0.08 0.07 0.06 0.06

Facial Landmarks Regression Method. In Fig. 5.
Ours (ftt) can generate more natural head movements for the
source video with large head movements on the right, while
Ours (fa) can only generate slight head movements. Al-
though our method does not generate exactly the same head
movements as ground truth, the dynamic trends are similar.

Fig. 5. Illustration of different facial landmark regression
method results. fa represents direct regression to facial land-
marks, ftt represents that we first generate facial landmark,
rotation matrix and offset matrix aligned with the standard
face, and then obtain the facial landmark through the inverse
affine transformation.

4. CONCLUSIONS

By leveraging self-supervised constrastive learning, memory
module and mixture density networks, the proposed method
can synthesize talking head videos with natural head move-
ments. Future work will focus on extracting emotion embed-
dings from speech and adding emotion embeddings to talking
head generation.
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