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ABSTRACT
This work addresses the issue of energy efficiency maximiza-
tion in a multi-user network aided by a reconfigurable intel-
ligent surface (RIS) with global reflection capabilities. Two
optimization methods are proposed to optimize the mobile
users’ powers, the RIS coefficients, and the linear receive fil-
ters. Both methods are provably convergent and require only
the solution of convex optimization problems. The numerical
results show that the proposed methods largely outperform
heuristic resource allocation schemes.

Index Terms— RIS, energy efficiency, resource alloca-
tion, 6G wireless networks.

1. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are emerging as a
promising technology for future 6G wireless networks [1–4].
Besides providing a large number of degrees of freedom for
signal transmission, RISs are particularly attractive from an
energy-efficient point of view for their nearly passive behav-
ior. Energy efficiency (EE) was already considered a key per-
formance indicator of 5G networks, and remains a major as-
pect of 6G networks, too. Indeed, recent studies argue that 5G
has not achieved the promised 2000x EE increased, actually
increasing the EE only by a factor four [5].

While RISs have the potential of drastically improving the
EE of wireless networks, due to their very limited hardware
power consumption, most research contributions on radio re-
source allocation for RIS-aided networks have focused on
maximizing the system rate [6–8] or on minimizing the power
consumption [9, 10], rather than optimizing the bit-per-Joule
EE. Only few contributions, on the other hand, have started
addressing the issue of radio resource allocation for EE maxi-
mization in RIS-based networks. In [11], the EE of the down-
link of an RIS-aided multi-user network is optimized, assum-
ing zero-forcing transmission. It is shown that an RIS can
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be more energy-efficient than an amplify-and-forward relay.
In [12], a single-user multiple-input multiple-output (MIMO)
link is considered, and it is shown that an RIS can provide
significant EE gains even using few transmit and receive an-
tennas. In [13], the trade-off between the EE and spectral
efficiency is addressed in the downlink of a MIMO multi-user
network, by optimizing the transmit beamforming and RIS
coefficients. In [14], the EE of a non-orthogonal multiple ac-
cess network is maximized, assuming successive interference
cancellation to remove multi-user interference. In [15] the EE
of a cell-free RIS-aided network is optimized by means of se-
quential optimization, with respect to the transmit beamform-
ing and the RIS phase shifts. In [16], the EE of an RIS-aided
network employing wireless power transfer is addressed, as-
suming a transmission over orthogonal carriers and applying
an outage rate constraint. In [17], a max-min EE maximiza-
tion problem is tackled by Dinkelbach’s method in a RIS-
aided heterogeneous network with hardware impairments.

In this paper, we analyze the issue of EE maximization in
an RIS-aided multi-user wireless network, by novel optimiza-
tion methods. Unlike previous works, the optimization is per-
formed assuming that the RIS is capable of global reflection,
i.e. the constraint on the power reflected by the RIS is not
applied to each reflecting element individually, but rather to
the complete surface [18]. Finally, EE optimization is tackled
not only with respect to the transmit powers and RIS reflec-
tion coefficients, as it is customary in the literature, but also
with respect to the linear receive filters. As described in the
rest of the work, this complicates the mathematical structure
of the function to maximize, especially when the optimal re-
ceive filters are embedded into the EE function.

2. SYSTEM MODEL

Let us consider the uplink of a multi-user system in which
K single-antenna mobile terminals communicate with a base
station equipped with NR antennas, through an RIS with N
reflecting elements (Fig. 1). Let us denote by hk the N × 1
channel from user k to the RIS, by G the NR × N channel
from the RIS to the base station, by Γ = diag(γ1, . . . , γN ),
the matrix whose diagonal contains theN RIS reflection coef-

ar
X

iv
:2

30
3.

03
23

9v
1 

 [
ee

ss
.S

P]
  6

 M
ar

 2
02

3



ficients, and by pk and sk the transmit power and information
symbol of user k.

Fig. 1. Considered wireless network.

Related works in the literature consider RISs with local
reflection capabilities, i.e. they assume that each RIS element
is individually constrained to be less than a threshold, namely
|γn|2 ≤ PR for all n = 1, . . . , N , with PR ≤ 1. Instead, this
work considers the more general scenario in which the RIS
is characterized by a global reflection constraints, i.e. a con-
straint on the total power reflected by all of the RIS elements,
namely

∑N
n=1 |γn|2 ≤

∑N
n=1 PR = NPR. We should note

that in both cases the total power reflected by the RIS is equal
to NPR. However, the global reflection constraint is more
general, as it allows for the modulus of some reflection coef-
ficients to be larger than one, while ensuring that the RIS is
still nearly-passive from the global point of view, i.e. the total
reflected power is not larger than the total incident power.

The k-th user’s signal-to-interference-plus-noise ratio
(SINR) after applying the receive filter ck, is

SINRk =
pk|cHk Akγ|2

σ2‖ck‖2 +
∑

m 6=k pm|cHk Amγ|2
, (1)

where we have definedHk = diag(hk(1), . . . ,hk(N)), γ =
[γ1, . . . , γN ], and Ak = GHk, for all k = 1, . . . ,K. Then,
the k-th user’s achievable rate is Rk = B log2 (1 + SINRk),
while the system global energy efficiency (GEE) is written as

GEE = B

∑K
k=1 log2 (1 + SINRk)

Pc +
∑K

k=1 µkpk
, (2)

with B the communication bandwidth, Pc = P0 + PRIS the
total hardware power consumed in the system, with P0 the
hardware power consumed by the base station and mobile ter-
minals, and PRIS the hardware power consumed by the RIS,
i.e., PRIS = NPc,n + P0,RIS , with Pc,n the static power
consumed by each RIS element, and P0,RIS accounting for
all other sources of static power consumption at the RIS.

The problem of interest in this work is

max
γ,p,C

GEE(γ,p,C) (3a)

s.t. ‖γ‖2 ≤ NPR , 0 ≤ pk ≤ Pmax,k ∀k = 1, . . . ,K (3b)

wherein we have defined p = [p1, . . . , pK ],C = [c1, . . . , cK ],
and Pmax,k is the k-th user’s maximum transmit power. In
order to tackle the non-convex Problem (3), two algorithms
are presented in Sections 3 and 4.

3. FIRST PROPOSED APPROACH

The first optimization method is based on the alternating op-
timization algorithm applied to the variables γ, p, and C.

Optimization of γ. Since the vector γ affects only the
numerator of the GEE, the optimization of γ is stated as

max
γ

∑K
k=1Rk , s.t. ‖γ‖2 ≤ NPR . (4)

Problem (4) is challenging because the objective is not con-
cave in γ. In order to provide a practical, but at the same
time theoretically grounded method for tackling (4), we re-
sort to the sequential approximation method [19]. To this
end, we need to find a concave lower-bound of (4). To this
end, we begin by applying the lower-bound log2

(
1 + x

y

)
≥

log2

(
1 + x̄

ȳ

)
+ x̄

ȳ

(
2
√
x√
x̄
− x+y

x̄+ȳ − 1
)

, which holds for any
x, y, x̄ and ȳ, and holds with equality whenever x = x̄ and
y = ȳ. Elaborating yields

Rk =log2

(
1+

pk|cHk Akγ|2

σ2‖ck‖2 +
∑

m 6=k pm|cHk Amγ|2

)
≥ (5)

Āk+B̄k

(
D̄k|cHk Akγ|−Ēk

K∑
m=1

pm|cHk Amγ|2−F̄k

)
=R̄k

with γ̄ any feasible vector of RIS coefficients, and Āk =
log2

(
1 + pk|cHk Akγ̄|2/Ik

)
, Bk = pk|cHk Akγ̄|2/Ik, Dk =

2/|cHk Akγ̄|, Ek = 1/Ik, Fk = Ekσ
2‖ck‖2 + 1, Ik =

σ2‖ck‖2 +
∑

m 6=k pm|cHk Amγ̄|2. The function in (5) is not
concave in γ due to the term |cHk Akγ|, which is convex1 in
γ. However, being convex, |cHk Akγ| can be lower-bounded
by its first-order Taylor expansion around any point. Thus,
considering the Taylor expansion of |cHk Akγ| around γ̄, we
obtain the concave lower-bound

Rk≥R̄k≥B̄k

(
D̄k

(
|cHk Akγ̄|+ <

{
AH

k ckc
H
k Akγ̄

|cHk Akγ̄|
(γ−γ̄)

})

−Ēk

K∑
m=1

pm|cHk Amγ|2 − F̄k

)
+ Āk =R̃k(γ) (6)

Thus, in each iteration of the sequential method, the following
convex problem is to be solved

max
γ

∑K
k=1 R̃k(γ) , s.t. ‖γ‖2 ≤ NPR (7a)

1Recall that the composition of a convex function with a convex and in-
creasing function is convex.



Optimization of p. Defining ak,m = |cHk Amγ|2, for all
m and k, and dk = σ2‖ck‖2, the power optimization problem
can be stated as

max
p

∑K
k=1 log2

(
1 +

pkak,k
dk +

∑
m 6=k pmak,m

)
∑K

k=1 µkpk + P
(p)
c

(8a)

s.t. 0 ≤ pk ≤ Pmax,k ,∀ k = 1, . . . ,K (8b)

Since the numerator of (8a) is not a concave function of p,
the objective in (8a) is not a pseudo-concave function and
thus it is computationally unfeasible to solve (8) by fractional
programming [20]. Then, we resort to the sequential frac-
tional programming method [20], in order to derive a pseudo-
concave lower-bound of (8a), which can be maximized by
fractional programming. To this end, we express (8a) as

GEE(p) =

∑K
k=1 log2

(
dk +

∑K
k=1 pkak,k

)
∑K

k=1 µkpk + P
(p)
c︸ ︷︷ ︸

g1(p)

(9)

−

∑K
k=1 log2

(
dk +

∑
m6=k pmak,m

)
∑K

k=1 µkpk + P
(p)
c︸ ︷︷ ︸

g2(p)

.

Then, a pseudo-concave lower-bound of GEE(p), which we
denote by G̃EE(p), can be obtained by replacing the numer-
ator of g2(p) with its first-order Taylor expansion around any
feasible point p̄ [20]. Thus, in each iteration of the sequential
method, the problem to be solved is the maximization of the
pseudo-concave function G̃EE(p), subject to the power con-
straint pk ∈ [0, Pmax,k], for all k = 1, . . . ,K, which can be
globally and efficiently solved by fractional programming.

Optimization of C. The optimization of the receive fil-
ters affects again only the numerator of the GEE. Moreover,
it can be decoupled over the users, thus reducing the prob-
lem to the maximization of the individual rates of the users.
The solution to this problem is well-known to be the linear
minimum mean squared error (MMSE) receiver, which for
the case at hand, is expressed as ck =

√
p
k
M−1

k Akγ, with
Mk =

∑
m 6=k pmAmγγ

HAH
m + σ2INR

.

4. SECOND PROPOSED APPROACH

While the first proposed approach considers the alternating
optimization of three variables, namely, the transmit powers
p, the receive filters c1, . . . , cK , and the RIS reflection coeffi-
cients γ, in this section we develop an algorithm that embeds
the optimal expression of the linear MMSE filters into the
GEE, and optimizes the resulting expression with respect to
p and γ. While this is expected to yield better performance,
an intuition that will be confirmed by numerical results, it also

leads to a more challenging optimization problem, due to the
more involved expression of the EE function.

To elaborate, plugging the expression of the linear MMSE
receive filters, i.e. ck =

√
p
k
M−1

k Akγ, into (1) leads to

SRMMSE =
∑K

k=1 log2

(
1+pkγ

HAH
k M

−1
k Akγ

)
= (10)∑K

k=1log2

∣∣∣σ2INR
+
∑K

m=1 pmAmγγ
HAH

m

∣∣∣−∑K
k=1log2|Mk|

Thus, the GEE maximization problem becomes

max
γ,p

SRMMSE(γ,p)∑K
k=1 µkpk + P

(p)
c

(11a)

s.t. ‖γ‖2≤NPR, pk ∈ [0, Pmax,k],∀k = 1, . . . ,K (11b)

Problem (11) is tackled by alternating optimization of p and
γ, as discussed next.

Optimization of γ. Since γ affects only the numerator of
(11a), when p is fixed the problem reduces to the maximiza-
tion of the system sum-rate, which is given by SRMMSE(γ)
in (10), subject to ‖γ‖2 ≤ NPR. The objective is not con-
cave, but we can proceed by defining X = γγH , Bk =
pkAkXA

H
k , andB =

∑K
k=1Bk, which yields

SRMMSE(X)=

K∑
k=1

log2

∣∣σ2INR
+B
∣∣

︸ ︷︷ ︸
G1(X)

−
K∑

k=1

log2

∣∣∣∣∣∣σ2INR
+
∑
m 6=k

Bm

∣∣∣∣∣∣︸ ︷︷ ︸
G2(X)

,

which can be lower-bounded by a concave function by ex-
panding G2(X) around any point X̄ , i.e. SRMMSE(X) ≥
G1(X)−G2(X̄)−<

{
tr
(
∇G2(X̄)H(X−X̄)

)}
= S̃RMMSE.

Then, relaxing the rank-one constraint on X , the resulting
problem in each iteration of the sequential method is

max
X

S̃RMMSE(X) , s.t. tr(X) ≤ NPR ,X � 0 . (12)

Upon convergence of the sequential procedure, if the conver-
gence point X∗ has unit-rank, it is feasible for the original
problem. Otherwise, a feasible solution can be obtained by
randomization or rank reduction techniques [21].

Optimization of p. When γ is fixed, the problem can be
tackled by resorting to the sequential fractional programming
framework. Indeed, the sum-rate in (10) is the difference of
two concave functions of p, and thus the GEE in (11a) can
be lower-bounded by linearizing the negative term in (10), i.e.

the functionF (p)=

K∑
k=1

log2

∣∣∣∣∣∣σ2INR
+
∑
m 6=k

pmAmγγ
HAH

m

∣∣∣∣∣∣,
around any feasible point p̄. This leads to

GEEMMSE(p) ≥

∑K
k=1 log2

∣∣∣σ2INR
+
∑K

m=1 pmAmγγ
HAH

m

∣∣∣∑K
k=1 µkpk + P

(p)
c

− F (p̄)∑K
k=1 µkp̄k + P

(p)
c

−
(
∇pF (p̄)

)T
(p− p̄)∑K

k=1 µkpk + P
(p)
c

= G̃EEMMSE



Thus, in each iteration of the sequential fractional program-
ming algorithm, the problem to be solved is stated as

max
p

G̃EEMMSE(p), s.t. pk∈ [0, Pmax,k],∀k=1, . . . ,K, (13)

which has linear constraints and whose objective is the ratio
between a concave and an affine function [20]. Thus, (13) can
be solved by fractional programming.

5. NUMERICAL RESULTS

We consider an instance of the network described in Sec-
tion 2, with K = 4, NR = 4, N = 100, B = 20 MHz,
P0 = 40 dBm, P0,RIS = 20 dBm, Pc,n = 0 dBm. The noise
power spectral density is −174 dBm/Hz, and the noise fig-
ure is 10 dB. The users are randomly placed in an area with
radius 100 m around the RIS, and the base station is placed
50 m away from the RIS. The users are at a random height in
[0, 5] m, while the RIS and base station are at heights of 15 m
and 10 m, respectively. The path-loss exponent is η = 4,
and Rice fading is considered for all channels, with factors
Kt = 4 for the channel from the RIS to the base station and
Kr = 2 for the channels from the mobile users to the RIS.

Figure 2 shows the GEE achieved by: (a) maximizing the
GEE by the method from Section 3; (b) maximizing the GEE
by the method from Section 4; (c) the resource allocation ob-
tained by adapting the method from Section2 3 for rate maxi-
mization; (d) the resource allocation obtained by adapting the
method from Section 4 for rate maximization; (e) uniform
power allocation and random RIS phase shifts. As antici-
pated, the method from Section 4 significantly outperforms
the approach from Section 3, thanks to the exploitation of
the mathematical structure of the optimal receive filter, rather
than simply updating the receive filter within the alternating
maximization algorithm. Moreover, a large gain is obtained
compared to Case (e), in which radio resources are not opti-
mized. Figure 3 shows the rate achieved by: (a) maximizing
the rate by the method from Section 3; (b) maximizing the
rate by the method from Section 4; (c) the resource alloca-
tion obtained by adapting the method from Section 3 for GEE
maximization; (d) the resource allocation obtained by adapt-
ing the method from Section 4 for GEE maximization; Sim-
ilar considerations as for Fig. 2 can be made. Finally, Fig.
4 compares the maximum GEE achieved by the method from
Section 4 to the special case in which the same GEE maxi-
mization method from Section 4 is specialized to the bench-
mark scheme of a RIS with local reflection constraints, i.e.
replacing (3b) by |γn| ≤ PR, for all n = 1, . . . , N . The
comparison is made for Kt = Kr = 2; 4. As expected, the
results show that a global reflection constraint provides a visi-
ble gain, since it widens the set of feasible RIS configurations.
Also, the gain is more significant for lower values of the Ri-
cian factor. Indeed, in this case the channel realizations tend

2Both the methods from Sections 3 and 4 can be be specialized to perform
sum-rate maximization by simply setting µk = 0, for all k = 1, . . . ,K.

to be more spread out and an RIS with global reflections can
better adapt to this scenario.
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6. CONCLUSIONS

This work addressed the EE maximization problem in a multi-
user network aided by an RIS endowed with global reflection
capabilities. The results indicate that the proposed radio re-
source optimization algorithms provide large EE gains com-
pared to heuristic random resource allocations. Moreover, a
careful optimization of the receive filters and exploitation of
the RIS global reflection capabilities can provide significant
performance improvements.
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[5] D. López-Pérez, A. De Domenico, N. Piovesan,
G. Xinli, H. Bao, S. Qitao, and M. Debbah, “A survey
on 5G radio access network energy efficiency: Massive
mimo, lean carrier design, sleep modes, and machine
learning,” IEEE Communications Surveys Tutorials, pp.
1–1, 2022.

[6] P. Zeng, D. Qiao, Q. Wu, and Y. Wu, “Through-
put maximization for active intelligent reflecting surface
aided wireless powered communications,” IEEE Wire-
less Communications Letters, pp. 1–1, 2022.

[7] S. Hu, Z. Wei, Y. Cai, C. Liu, D. W. K. Ng, and
J. Yuan, “Robust and secure sum-rate maximization for
multiuser MISO downlink systems with self-sustainable
IRS,” IEEE Transactions on Communications, vol. 69,
no. 10, pp. 7032–7049, 2021.

[8] A. Abrardo, D. Dardari, and M. Di Renzo, “Intelli-
gent reflecting surfaces: Sum-rate optimization based on
statistical position information,” IEEE Transactions on
Communications, vol. 69, no. 10, pp. 7121–7136, 2021.

[9] Q. Wu and R. Zhang, “Intelligent reflecting surface en-
hanced wireless network: Joint active and passive beam-
forming design,” IEEE Trans. on Wireless Commun.,
vol. 18, no. 11, pp. 5394–5409, November 2019.

[10] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan,
“A framework of robust transmission design for IRS-
aided MISO communications with imperfect cascaded
channels,” IEEE Transactions on Signal Processing,
vol. 68, pp. 5092–5106, 2020.

[11] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Deb-
bah, and C. Yuen, “Reconfigurable intelligent surfaces
for energy efficiency in wireless communication,” IEEE
Transactions on Wireless Communications, vol. 18, no.
8, pp. 4157–4170, 2019.

[12] A. Zappone, M. Di Renzo, F. Shams, X. Qian, and
M. Debbah, “Overhead-aware design of reconfigurable
intelligent surfaces in smart radio environments,” IEEE
Transactions on Wireless Communications, vol. 20, no.
1, pp. 126–141, 2021.

[13] L. You, J. Xiong, D. W. K. Ng, C. Yuen, W. Wang, and
X. Gao, “Energy efficiency and spectral efficiency trade-
off in RIS-aided multiuser MIMO uplink transmission,”
IEEE Transactions on Signal Processing, vol. 69, pp.
1407–1421, 2021.

[14] T. Wang, F. Fang, and Z. Ding, “An SCA and relaxation
based energy efficiency optimization for multi-user RIS-
assisted NOMA networks,” IEEE Transactions on Ve-
hicular Technology, vol. 71, no. 6, pp. 6843–6847, 2022.

[15] Q. N. Le, V.-D. Nguyen, O. A. Dobre, and R. Zhao,
“Energy efficiency maximization in RIS-aided cell-free
network with limited backhaul,” IEEE Communications
Letters, vol. 25, no. 6, pp. 1974–1978, 2021.

[16] Z. Gao, Y. Xu, IEEE Q. Wang Qingqing Wu, Member,
and Dong Li, “Outage-constrained energy efficiency
maximization for RIS-assisted WPCNs,” IEEE Commu-
nications Letters, vol. 25, no. 10, pp. 3370–3374, 2021.

[17] Y. Xu, H. Xie, Q. Wu, C. Huang, and C. Yuen, “Robust
max-min energy efficiency for RIS-aided hetnets with
distortion noises,” IEEE Transactions on Communica-
tions, vol. 70, no. 2, pp. 1457–1471, 2022.

[18] M. Di Renzo, F. Danufane, and S. Tretyakov, “Commu-
nication models for reconfigurable intelligent surfaces:
From surface electromagnetics to wireless networks op-
timization,” Proceedings of the IEEE, vol. 110, no. 9,
pp. 1164–1209, 2022.

[19] B. R. Marks and G. P. Wright, “A general inner approx-
imation algorithm for non-convex mathematical pro-
grams,” Operations Research, vol. 26, no. 4, pp. 681–
683, 1978.

[20] A. Zappone and E. A. Jorswieck, “Energy efficiency in
wireless networks via fractional programming theory,”
Foundations and Trends® in Communications and In-
formation Theory, vol. 11, no. 3-4, pp. 185–396, 2015.

[21] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang,
“Semidefinite relaxation of quadratic optimization prob-
lems,” IEEE Signal Processing Magazine, vol. 27, no.
3, pp. 20–34, 2010.


