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ABSTRACT

Voice Conversion (VC) must be achieved while maintaining
the content of the source speech and representing the charac-
teristics of the target speaker. The existing methods do not
simultaneously satisfy the above two aspects of VC, and their
conversion outputs suffer from a trade-off problem between
maintaining source contents and target characteristics. In this
study, we propose Triple Adaptive Attention Normalization
VC (TriAAN-VC), comprising an encoder-decoder and an
attention-based adaptive normalization block, that can be ap-
plied to non-parallel any-to-any VC. The proposed adaptive
normalization block extracts target speaker representations
and achieves conversion while minimizing the loss of the
source content with siamese loss. We evaluated TriAAN-VC
on the VCTK dataset in terms of the maintenance of the
source content and target speaker similarity. Experimental
results for one-shot VC suggest that TriAAN-VC achieves
state-of-the-art performance while mitigating the trade-off
problem encountered in the existing VC methods.

Index Terms— adaptive attention normalization, any-to-
any, siamese loss, voice conversion

1. INTRODUCTION

VC is the task of transforming the voice of the source speaker
into that of the target speaker while maintaining the linguis-
tic content of the source speech. Traditional methods require
parallel data for training VC models [1, 2] or cannot convert
using unseen speakers [3,4]. For the diverse utilization of VC,
researchers have recently studied any-to-any (A2A) and one-
shot VC, which can be applied to unseen speakers and require
only one utterance of source and target speakers [5–13]. To
perform the conversion, they disentangle the utterances into
content and speaker representations.

As vector quantization methods, [6, 8] utilized discrete
codes as content and the difference between discrete and
continuous features as speaker representations. However,
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representing content with discrete codes reduces time rela-
tionships, damaging content information. For attention-based
conversion methods [10, 12], [10] suggested self-supervised
learning features can improve VC performance. Although
their results were highly similar to the target speaker charac-
teristics, the conversion method using overly detailed speaker
representation biased the results only to speaker similarity.
Inspired by image style transfer, [7, 9, 11] adopted Adaptive
Instance Normalization (AdaIN) [14] for conversion. [7] used
only high-level speaker features for AdaIN, causing results to
be biased to speaker similarity. [9] alleviated the problem by
exploiting multi-level target speaker features for AdaIN, but
AdaIN cannot represent enough speaker characteristics.

Although the previous methods achieved significant im-
provements in A2A VC, their methods utilized overly detailed
or generalized speaker representations; therefore, the conver-
sion results satisfied only one aspect of VC (i.e., maintenance
of source content or similarity to the target speaker). This
underscores the necessity for a conversion method using core
speaker representations to mitigate the trade-off problem.

We propose Triple Adaptive Attention Normalization VC
(TriAAN-VC) for non-parallel A2A VC. TriAAN-VC, which
is based on an encoder-decoder structure, disentangles con-
tent and speaker features. TriAAN block extracts each de-
tailed and global speaker representation from disentangled
features and uses adaptive normalization for conversion. As a
training approach, siamese loss with time masking is applied
to maximize the maintenance of the source content. In A2A
one-shot VC, a comparison of results on the VCTK dataset
shows that TriAAN-VC achieves state-of-the-art performance
in terms of both evaluation metrics, namely, maintenance of
source content and similarity to the target speaker.

2. METHOD

2.1. Feature extraction

As [10] suggested Contrastive Predictive Coding (CPC) fea-
tures [15] contribute to the improvement of VC performance,
we adopt CPC features as inputs for the model. We use a pre-
trained model [16] to extract CPC features x ∈ RH×T from
raw audio xraw ∈ Rt, where H and T are the hidden size
and segment length of x and t is the signal length of xraw.
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Fig. 1. Overall architecture of TriAAN-VC.

Furthermore, to represent the pitch information of the source
speaker, the log fundamental frequency (f0) xf0 ∈ RT is ex-
tracted by applying the DIO algorithm to xraw, as in [17].

2.2. Encoder and Decoder

As shown in Figure 1, TriAAN-VC comprises two encoders,
extracting content and speaker information respectively, and
a decoder. The encoders and decoder are connected via a bot-
tleneck layer, and each contains L layers.

Before the encoders, we apply a convolution layer on
xc,s ∈ RH×Tc,s to expand H to channel size C, where xc,s are
the content and speaker inputs after feature extraction.
Encoder. Each encoder layer consists of a convolution block
and Instance Normalization (IN). Speaker Attention (SA) is
used only in the speaker encoder. The convolution block is
designed as a residual block comprising two convolution lay-
ers with a kernel size of 3 and a stride of 1.
Bottleneck layer. After the encoder process, f0 of the source
speaker xf0 ∈ RT is used to represent the pitch. Given
x′c ∈ RC×T is the output of the content encoder, we apply
a Gated Recurrent Unit (GRU) layer on the concatenated out-
puts between x′c and xf0. Before the decoder, the initial con-
verted representation is generated by applying Dual Adap-
tive Normalization (DuAN), a conversion method described
in Section 2.4, to the content and speaker representations.
Decoder. Each decoder layer contains a convolution block,
the same as that of encoders, and TriAAN block. TriAAN
block conducts conversion using the content feature from the
previous layer and gathered feature maps from the speaker
encoder layers. Finally, the outputs of the decoder are re-
fined by GRU layers and PostNet [18] to predict the log mel-
spectrogram ŷ ∈ RM×T , whereM is the number of mel bins.

2.3. Speaker Attention

Since AdaIN conversion process utilizes channel-wise statis-
tics of speaker representation, extracting core channel fea-
tures of speaker is necessary. To achieve it, we modify IN as
Time-wise IN (TIN) and design TIN-based Speaker Attention
(SA). In contrast to IN, TIN normalizes with the time-wise

mean and standard deviation, preserving channel relations.
For SA, we utilize TIN and self-attention [19] as follows:

Q = TIN(xs)Wq, K = xsWk, V = xsWv

Attention(Q,K, V ) = softmax(QK>/
√
d)V

(1)

xs ∈ RT×C and Wq,k,v ∈ RC×C denote speaker features
and each weight. Using query information as TIN results,
SA emphasizes and preserves the channel relations of speaker
features used as speaker information for conversion.

Fig. 2. TriAAN Block

2.4. TriAAN block

As depicted in Figure 2, we design TriAAN block consisting
of Dual Adaptive Normalization (DuAN) and GLobal Adap-
tive Normalization (GLAN) for the conversion process. Tri-
AAN block uses gathered feature maps F 1:L

s ∈ RT×C1:L from
each lth speaker encoder layer, where l = 1, 2, ..., L. DuAN
extracts layer-wise detailed speaker features from F ls in dual
view (i.e., time and channel) and performs adaptive normal-
ization. By contrast, GLAN uses all feature maps from the
speaker encoder to extract global speaker information.
DuAN. Inspired by adaptive attention normalization in im-
age style transfer [20], we design DuAN to extract detailed
speaker features and to conduct conversion. DuAN represents
attention-based statistics of layer-wise speaker features F ls.
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Given xc ∈ RT×C is the content feature from the previous
layer and N ( · ) is the normalization function, the attention
weight α ∈ RT×T , attention-weighted mean M ∈ RT×C ,
and variance V ar ∈ RT×C are defined as follows:

Q = N (xc)Wq, K = N (F ls)Wk, V = F lsWv

α = softmax(QK>/
√
d)

M = αV, V ar = α(V · V )−M ·M
(2)

Wq,k,v ∈ RC×C denotes each weight for linear transforma-
tion. α, obtained by the normalized feature, represents the
similarity between the content and speaker features. Further-
more, V ar is calculated using the expectation of variables
and the square of the variable expectations. By applying α,
the weighted mean and variance contain detailed speaker fea-
tures, that is per-point statistics. To prevent biased results with
excessively detailed speaker features, we take the time-wise
average ofM and V ar, followed by applying a square root on
V ar to obtain the standard deviation S ∈ RC . The converted
representation x′c ∈ RT×C , obtained by adaptive normaliza-
tion and the content feature, is defined as x′c = IN(xc)S+M .
To perform it in terms of channel and time, we separate the
adaptive normalization process depending on N ( · ) function
(i.e., IN and TIN), making two converted representations.
GLAN. To represent the global speaker information, we uti-
lize all feature maps F 1:L

s from the speaker encoder. For the
content feature xc ∈ RC×T in GLAN, we apply a convolu-
tion layer to the channel-wise concatenation of two converted
representations from DuAN. We obtain layer-wise concate-
nated means µ ∈ RL×C and standard deviations σ ∈ RL×C
from F 1:L

s , defined as µ = [avg(F 1
s ); ..., ; avg(F

L
s )] and σ =

[std(F 1
s ); ..., ; std(F

L
s )]. To extract core statistics from global

speaker features (i.e., µ and σ) for adaptive normalization, we
adopt self-attention pooling [21], which emphasizes impor-
tant speaker statistics. The attention pooling process used to
obtain the weighted mean µ′ ∈ RC and standard deviation
σ′ ∈ RC is as follows:

αµ = softmax(µWµ), ασ = softmax(σWσ)

µ′ = sum(µ× αµ), σ′ = sum(σ × ασ)
(3)

αµ,σ ∈ RLµ,σ and Wµ,σ ∈ RC×Cµ,σ denote attention weights
and each weight for transformation. Then, adaptive normal-
ization as in DuAN is applied with µ′ and σ′ for conversion.

2.5. Loss function

To train TriAAN-VC, we combine reconstruction loss and
siamese loss. Reconstruction loss is L1 loss between the
ground truth mel-spectrogram y ∈ RM×T and predicted mel-
spectrogram ŷ ∈ RM×T . y is extracted from the raw audio
using a mel-spectrogram transformation, and ŷ is predicted by
the proposed model when input features x ∈ RH×T are CPC
features of the raw audio. For siamese loss, L1 loss is applied
between y and ŷsiam ∈ RM×T , where ŷsiam is predicted by

the model with x augmented by time masking. Given L1 loss
is loss(y, ŷ) = ||y − ŷ||1/T , the combined loss is as follows:

L = (loss(y, ŷ) + loss(y, ŷsiam))/2 + loss(ŷ, ŷsiam) (4)

By calculating the additional loss with ŷsiam, the robustness
and consistency of the model can be improved. In particular,
since time masking removes content information during train-
ing, the loss with the siamese branch makes the model robust
for maintaining content information.

3. EXPERIMENTS

3.1. Experimental setup

For comparison, we use the VCTK dataset [22] containing
about 400 utterances per 109 speakers. We split the dataset
into ratios of 60%, 20%, and 20% for train, validation, and
test set, respectively, considering speakers and utterances. For
conversion scenarios, we select 20 speakers and generate 600
pairs per Seen-to-Seen (S2S) and Unseen-to-Unseen (U2U)
scenarios. After downsampling the audio to 16 kHz, we ex-
tract CPC, f0, and log mel-spectrogram features based on a
frame size of 25ms, hop size of 10ms, and mel bins of 80.

For training details, we use a batch size of 64, an epoch
of 400, and Adam optimizer with a learning rate of 10−5.
For model parameters, we take H = 256, C = 512, and
L = 6. We adopt a Parallel WaveGAN vocoder [23] pre-
trained on the VCTK dataset to convert log mel-spectrograms
to waveforms. For comparison, benchmark models are repro-
duced using their official codes. They are trained with mel-
spectrogram features except for S2VC which uses CPC fea-
tures. The conversion results are available on the demo page.1

3.2. Evaluation metrics

We adopt objective and subjective measures for evaluation.
For objective measures, the models are evaluated in respect
of two aspects of VC (i.e, maintenance of source content and
similarity to the target speaker). Word Error Rate (WER) and
Character Error Rate (CER) are used to evaluate the error rate
of scripts between the source and converted utterances. The
script of the converted utterances is extracted by a pre-trained
Wav2Vec 2.0 [24]. For speaker similarity, we adopt the ac-
ceptance rate based on Speaker Verification (SV) model as
in [10,12]. The score is measured by the cosine similarity be-
tween the target and converted embedding vectors, extracted
by the SV model, and the threshold which is determined based
on the equal error rate in the VCTK dataset.

In the subjective evaluation, we conduct Mean Opinion
Score (MOS) test for naturalness and similarity. Subjects are
asked to assign a score from 1 to 5 after listening to converted
utterances or a pair of target and converted utterances for nat-
uralness and similarity evaluation. We perform a test on 15

1https://winddori2002.github.io/vc-demo.github.io/
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Table 1. Objective evaluation results on the VCTK dataset for any-to-any one-shot voice conversion which uses one target
utterance per sample. SV indicates the acceptance rate over the threshold determined by the equal error rate in the dataset.

Model
Word Error Rate (WER %) Character Error Rate (CER %) Speaker Verification (SV %)

S2S U2U Avg. S2S U2U Avg. S2S U2U Avg.

AUTO-VC [5] 29.96 27.33 28.64 15.98 14.75 15.36 36.00 20.84 28.42
AdaIN-VC [7] 47.33 46.84 47.08 28.16 27.79 27.98 89.34 81.17 85.25
AGAIN-VC [9] 28.89 26.45 27.67 15.65 14.52 15.08 71.33 67.00 69.17
VQVC+ [8] 52.92 53.02 52.97 30.57 31.69 31.13 76.34 55.33 65.83
S2VC [10] 44.99 42.65 43.82 25.88 24.89 25.38 95.34 89.17 92.25
VQMIVC [17] 29.30 28.05 28.67 15.71 15.04 15.37 86.33 35.67 61.00

TriAAN-VC 20.73 22.35 21.54 10.79 11.69 11.24 96.00 89.67 92.83

subjects using randomly selected 20 pairs of utterances for
the S2S and U2U scenarios, respectively.

Fig. 3. MOS results with 95% confidence intervals for natu-
ralness and similarity.

3.3. Experimental results

Comparison results. We conducted the experiment for one-
shot VC to compare the proposed model with the previous
methods using objective and subjective measures. As indi-
cated in Table 1, TriAAN-VC achieved better performance on
WER, CER, and SV scores, regardless of conversion scenar-
ios compared to the existing methods which suffered from a
trade-off problem of VC. It suggests that the conversion meth-
ods using compact speaker features can simultaneously retain
both source content and target speaker characteristics.

Figure 3 depicts the average MOS results of the S2S
and U2U scenarios, and it includes oracles reconstructed by
the vocoder. Similar to the results of objective evaluation,
TriAAN-VC demonstrated a slight improvement over S2VC
in terms of similarity, which is close to the performance of the
oracle. Furthermore, TriAAN-VC outperformed the previous
methods in terms of naturalness evaluation, suggesting the
proposed model can make relatively unbiased results.
Further experiment. As ablation studies, we analyze the
contributions of the proposed components. As listed in rows
1-3 of Table 2, the use of each CPC feature and siamese loss
contributed significantly to the performance gain of WER and

SV. In rows 4-6 of Table 2, we excluded one of the compo-
nents of TriAAN-VC without siamese loss. The results sug-
gested that SA particularly contributed to the improvement
of WER, and TriAAN block was the crucial component for
the performance gain of SV. Although each component con-
tributed to the performance gain in WER or SV, they also
suffered from the trade-off problem, implying all the com-
ponents are necessary to mitigate the trade-off problem. In
addition to one-shot VC, TriAAN-VC was effective in multi-
utterance scenarios. Under the multiple utterance setting us-
ing more than one target utterance, TriAAN-VC with CPC
improved its performance by about 4% and 5% on WER and
SV, compared to the one-shot VC results.

Table 2. Results of ablation studies and multi-utterance sce-
narios. † indicates TriAAN-VC without siamese loss.

Model
WER % SV %

S2S U2U S2S U2U

TriAAN-VC + Mel 27.31 27.07 90.34 88.34
TriAAN-VC + CPC 20.73 22.35 96.00 89.67
TriAAN-VC† + CPC 24.85 26.37 94.67 89.67

- SA 28.16 29.87 93.84 90.17
- GLAN 20.88 21.11 92.50 87.17
- DuAAN 20.58 20.93 90.00 83.00

3-utterance scenario 16.73 18.45 99.00 96.33
5-utterance scenario 16.90 17.82 98.50 98.17

4. CONCLUSION

In this study, we proposed TriAAN-VC for non-parallel A2A
VC, which extracts compact speaker features and performs
adaptive normalization for conversion. The results of A2A
VC on the VCTK dataset indicate that TriAAN-VC achieves
outstanding performance, including in multi-utterance scenar-
ios. Unlike previous methods that suffer from a trade-off in
VC, TriAAN-VC with siamese loss satisfies two aspects of
VC. Finally, ablation studies suggest the necessity of all pro-
posed methods to mitigate the trade-off problem of VC.
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