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ABSTRACT
Hybrid beamforming (HBF) is a key enabler for millimeter-
wave (mmWave) communications systems, but HBF opti-
mizations are often non-convex and of large dimension. In
this paper, we propose an efficient deep unfolding-based HBF
scheme, referred to as ManNet-HBF, that approximately max-
imizes the system spectral efficiency (SE). It first factorizes
the optimal digital beamformer into analog and digital terms,
and then reformulates the resultant matrix factorization prob-
lem as an equivalent maximum-likelihood problem, whose
analog beamforming solution is vectorized and estimated ef-
ficiently with ManNet, a lightweight deep neural network.
Numerical results verify that the proposed ManNet-HBF ap-
proach has near-optimal performance comparable to or better
than conventional model-based counterparts, with very low
complexity and a fast run time. For example, in a simulation
with 128 transmit antennas, it attains 98.62% the SE of the
Riemannian manifold scheme but 13250 times faster.

Index Terms— mmWave, hybrid beamforming, massive
MIMO, deep learning, AI, deep unfolding.

1. INTRODUCTION

Millimeter-wave (mmWave) massive multiple-input multiple-
output (mMIMO) systems have emerged as a key enabler for
5G wireless networks with substantial improvements in the
system spectral and energy efficiency (SE/EE) [1]. In such
systems, hybrid beamforming (HBF) transceivers can main-
tain significant multiplexing gains with reduced numbers
of power-hungry radio frequency (RF) chains [2–5]. How-
ever, their design and optimization are challenging due to the
constant modulus constraints and the strongly coupled high-
dimensional variables. Conventional optimization techniques
such as Riemannian manifold minimization (MO-AltMin) [6]
and alternating optimization (AO) [7] show good performance
but are highly complex. Recently, the applications of deep
learning (DL) in wireless communications have attracted
much attention [8–11], ranging from signal detection, channel
estimation [12–16] to HBF designs [16–26]. Two typical DL
techniques, including purely data-driven DL and deep unfold-
ing, are generally applied. The former relies mainly on the

learning capability of deep neural networks (DNNs) [16–18]
or convolutional neural networks (CNNs) [19–22] to generate
HBF beamformers. This approach exhibits major limitations
due to its resource-constraints, high complexity, and black-
box nature [9,12–14,27]. Alternatively, in the deep unfolding
approach, both domain knowledge and DL capabilities are
leveraged to build explainable DL models that achieve per-
formance gains and are easier to implement [27–29]. Based
on this advantage, deep unfolding models have been pro-
posed [23–26] for HBF designs with reduced feedback and
improved convergence speed. However, these schemes are
still complex due to the operations of highly-parameterized
DNNs [23], multiple CNNs [25], or conventional projected
gradient ascent/descent with learned step sizes [24, 26].

Because a deep unfolding model is constructed by un-
rolling a principled mathematical-oriented algorithm into
layers of a DNN, its efficiency significantly depends on the
conventional algorithm. Motivated by this fact, we herein
propose a near-optimal low-complexity deep unfolded HBF
design based on Riemannian manifold optimization [6], re-
ferred to as ManNet-HBF. Unlike most of the existing DL-
aided HBF designs, ManNet-HBF is developed based on in-
vestigating the matrix factorization problem for HBF design
rather than the original SE maximization. This is efficient
in the sense that the complicated log-det objective function
is transformed into a simpler norm-squared form that admits
a maximum-likelihood (ML) type least squares (LS) solu-
tion. We first develop a lightweight DNN architecture called
ManNet to efficiently estimate the ML solution to the ana-
log beamformer. Then, the digital beamformer is obtained
using a closed-form solution. Our simulation results demon-
strate that with only several layers composed of element-wise
multiplications/additions, the ManNet-HBF scheme performs
comparably to conventional near-optimal complex algorithms
such as the MO-AltMin [6] and AO [7] schemes, in much less
time and with much lower computational complexity.

2. SYSTEM MODEL AND DESIGN PROBLEM
We consider the downlink of a point-to-point mmWave
mMIMO system, where the base station (BS) and the mo-
bile station (MS) are equipped with Nt and Nr antennas,



respectively. The BS sends signal vector s ∈ CNs×1 of Ns
data streams to the MS, with E

{
ssH

}
= INs . An analog

precoder FRF ∈ CNt×NRF and a digital baseband precoder
FBB ∈ CNRF×Ns are employed at the BS. Here, NRF is the
number of RF chains at the BS, Ns ≤ NRF ≤ Nt, and the
normalized transmit power constraint at the BS is given as
∥FRFFBB∥2F = Ns. We focus on the design of hybrid pre-
coders and assume that Nr is relatively small so that a fully
digital combiner V ∈ CNr×Ns is employed at the MS. The
post-processed signal at the BS is expressed as

y =
√
ρVHHFRFFBBs+VHn, (1)

where ρ denotes the average received power, n is an addi-
tive white Gaussian noise (AWGN) vector at the MS with el-
ements distributed as CN (0, σ2

n ), and H is the channel matrix.

Based on (1), the achievable SE for Gaussian symbols is
given by [6]

R = log2 det

(
INs +

ρ

σ2
nNs

V†HFRFFBBF
H
BBF

H
RFH

HV

)
,

where (·)† denotes the matrix pseudo-inverse. We aim at de-
signing {FRF,FBB,V} to maximize R, which is challenging
due to the strong coupling among the variables. However,
given {FRF,FBB}, the optimal solution for V is the set of Ns
left singular vectors corresponding to the Ns largest singular
values of HFRFFBB. Therefore, we focus on the designs of
the hybrid precoders {FRF,FBB} in the sequel.

The SE maximization can be approximately achieved us-
ing the following design [6, 30]

minimize
FRF,FBB

∥Fopt − FRFFBB∥F (2a)

subject to
∣∣fRF

mn

∣∣ = 1, ∀m,n, (2b)

∥FRFFBB∥2F = Ns, (2c)
where fRF

mn is the (m,n)-th entry of FRF, and Fopt is the un-
constrained optimal digital precoder, given as Fopt = UΣ

1
2 .

Here, U contains columns as the Ns right singular vectors
corresponding to the Ns largest singular values of H, and Σ
is a diagonal matrix with Ns water-filling power allocation
factors on the diagonal. Eq. (2b) enforces the unit modulus
constraints of the analog precoding coefficients, and (2c) en-
sures the transmit power constraint at the BS. Problem (2)
is a non-convex matrix factorization problem, and joint opti-
mization of FRF and FBB is complicated due to the element-
wise unit-modulus constraint (2b). The MO-AltMin [6] and
orthogonal matching pursuit (OMP) [30] algorithms are two
conventional model-based approaches to solving problem (2).
In the former, FRF and FBB are solved by alternating between
a Riemannian manifold optimization and a LS problem. Such
a nested loop procedure is relatively complex and converges
slowly when the system dimensions are large. In contrast,
the OMP scheme requires onlyNRF iterations to construct the
columns of FRF from the channel response, which has low
complexity but unsatisfactory performance. We overcome
these challenges by proposing an efficient deep unfolding ap-

proach next.

3. PROPOSED MANNET-HBF SCHEME
3.1. Main Idea
In the proposed approach we apply the decoupling method
of [7]. Specifically, we first optimize FRF with FBB given
and constraint (2c) omitted. Then we design FBB to meet the
constraint given the optimized FRF. Thus, we first consider
the following problem:

minimize
FRF

∥Fopt − FRFFBB∥2F , subject to (2b), (3)

where the quadratic form of the objective function is intro-
duced without affecting the solution. Let z̃ ≜ vec(Fopt) ∈
CNtNs×1, x̃ ≜ vec(FRF) ∈ CNtNRF×1, and B̃ ≜ FBB ⊗
INt ∈ CNtNs×NtNRF with ⊗ denoting the Kronecker prod-
uct. Then, the objective function in (3) can be re-expressed
as ∥Fopt − FRFFBB∥2F = ∥z̃− B̃x̃∥2. By denoting

z ≜

[
R(z̃)
I(z̃)

]
,x ≜

[
R(x̃)
I(x̃)

]
,B ≜

R(B̃) −I
(
B̃
)

I
(
B̃
)

R
(
B̃
)  , (4)

with R(·) and I(·) representing the real and imaginary
parts of a complex vector/matrix, respectively, we can write
∥Fopt − FRFFBB∥2F = ∥z−Bx∥2. Let ai be the i-th ele-
ment of a real-valued vector a, and let S ≜ {x ∈ C2NtNRF×1 :
xi + jxNtNRF+i = x̃i, |x̃i| = 1, i = 1, . . . , NtNRF}. Then, S
consists of real-valued vectors whose corresponding complex
representations have unit-modulus elements, which are feasi-
ble for problem (3). With the newly introduced variables and
feasible set, the optimal solution to problem (3) admits the
LS problem similar to ML estimation in Gaussian noise as

xML = argmin
x∈S

∥z−Bx∥2 . (5)

In the deep unfolding technique, a DNN of L layers is
designed to mimic the projected gradient descent algorithm
to approximate xML. Specifically, let xℓ be the output of the
ℓ-th layer of the DNN. From (5), xℓ can be produced as [31]

xℓ = Πℓ

(
x− δℓ

∂ ∥z−Bx∥2

∂x

)
x=xℓ−1

= Πℓ

(
xℓ−1 − δℓB

T z+ δℓB
TBxℓ−1

)
, (6)

where δℓ denotes a step size, and Πℓ(·) represents a nonlin-
ear projection operator mapping xℓ−1 to xℓ. The relationship
in (6) motivates a DNN model to learn xML wherein the out-
put of a given layer (i.e., xℓ in the ℓ-th layer) results from
a nonlinear projection applied to the output of the previous
layer (i.e., xℓ−1 in the (ℓ − 1)-th layer) and other given in-
formation, including B and z. The nonlinear projection is
performed with trainable parameters, including the weights
and biases of the DNN, and the activation function. In this
regard, the DNN can efficiently learn the projection and the
step size of the projected gradient descent algorithm. Applied
over multiple layers, the final output, i.e., xL, will be a good
estimate of xML as long as the DNN is well structured and
trained. Next, we develop such an efficient DNN architecture
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Fig. 1. Detailed operation of sparse layer ℓ of ManNet. Here, ⊙ represents
the Hadamard product of two vectors.

refered to as ManNet.
3.2. Proposed ManNet Approach
To configure ManNet, we denote uℓ−1 ≜ BTBxℓ−1 −BT z
and expand (6) as

xℓ = Πℓ (xℓ−1 + δℓuℓ−1) . (7)
In this approach the classical gradient descent optimization is
learned by a DNN that performs nonlinear transformations,
avoiding computationally intensive tasks (e.g., line search of
the step size, computing the gradient) as required in conven-
tional Riemannian manifold optimization. As such, we pro-
pose ManNet as a network of L layers defined by (7) whose
goal is to learn xML. Its implementation is detailed next.
Remark 1 ManNet takes xℓ−1 and uℓ−1 as the input of the
ℓ-th layer, and outputs xℓ as the result of the nonlinear trans-
formation Πℓ, as indicated in (7). Importantly, the i-th el-
ement of xℓ only depends on the i-th elements of xℓ−1 and
uℓ−1. Thus, only the nodes (or neurons) at the same vertical
level between layers are connected making ManNet a sparsely
connected DNN. We employ activation function [12]

ψt(x) = −1 +
1

|t|
(σ(x+ t)− σ(x− t)) , (8)

where σ(·) is the rectified linear unit (ReLU) activation func-
tion, and t is a training parameter. This guarantees that the
amplitudes of the elements of xℓ are in the range [−1, 1], i.e.,
|xi| ≤ 1, i = 1, . . . , 2NtNRF. As a result, its correspond-
ing complex-valued representation x̃ℓ has elements x̃ℓ,i with
|x̃ℓ,i| ≤

√
2. The final output of the DNN is then normalized

to produce a feasible solution satisfying constraint (2b).
Let wℓ and bℓ denote the weight and bias vectors of the

ℓ-th layer of ManNet. A detailed network architecture illus-
trating the operation of each layer is shown in Fig. 1. We
employ the loss function

L =

L∑
ℓ=1

log(ℓ) ∥z−Bxℓ∥2 , (9)

which sums the total objective values of all L layers. The
DNN is trained to optimize the parameter set

{
{wℓ,bℓ}Lℓ=1, t

}
such that L is minimized, which also directly minimizes the
objective function in (5) at the network output ℓ = L. It is
seen from the loss function (9) that training labels for FRF
are not required. Thus, the training method is unsupervised.
Note that if supervised training were used, it would require
implementation of a conventional HBF scheme to obtain
the training labels, which would dramatically increase the
training complexity.

Algorithm 1 ManNet-HBF

Input: H,Fopt, ManNet’s trained parameters
{
{wℓ,bℓ}Lℓ=1, t

}
.

Output: FRF,FBB.
1: Initialize F

(0)
RF and F

(0)
BB based on the OMP scheme.

2: Obtain z, x, and B based on (4).
3: for ℓ = 1 → L do
4: Construct the input: uℓ−1 ≜ BTBxℓ−1 −BT z.
5: Apply weights: x̂ℓ = wℓ ⊙ xℓ−1 + bℓ.
6: Apply the activation function: xℓ = ψt(x̂ℓ).
7: end for
8: Reconstruct the complex RF precoding matrix FRF from xL.
9: Obtain FBB based on (11).

Table 1. Computational complexity of the proposed ManNet-HBF scheme
compared with conventional MO-AltMin, AO, and OMP approaches.

HBF schemes Complexity per iter. No. iter.
ManNet-HBF O(8N2

t N
2
RF) (real) L

MO-AltMin O(2N2
t NRFNsI

in
MO) (complex) I in

MOI
out
MO

AO O(2N3
t NRF) (complex) NtNRFIAO

OMP O(N2
t NRFNs) (complex) NRF

3.3. Proposed ManNet-HBF Algorithm
Once the offline training process is completed, ManNet

is readily applied for online HBF design. The overall deep
unfolding-enabled HBF scheme is summarized in Algorithm
1. Steps 1–2 are used to initialize the algorithm, wherein the
low-complexity OMP scheme is applied to generate the initial
analog and digital precoders. After that, ManNet executes
steps 3–7 to construct the outputs of each layer. Note that only
element-wise multiplications between the weight and input
vectors are required, as seen in step 5 and Fig. 1. The final
output of ManNet, i.e., xL, is reconstructed as the feasible
solution to FRF in step 8. More specifically, let

x⋆i =
xL,i + jxL,i+NtNRF

|xL,i + jxL,i+NtNRF |
, i = 1, . . . , NtNRF,

which satisfies (2b), with xL,i being the i-th element of xL.
Then, FRF is obtained as FRF = vec−1([x⋆1, . . . , x

⋆
NtNRF

]T ),
where vec−1(·) reshapes a vector of size NtNRF × 1 to form
a matrix of size Nt ×NRF.

With FRF obtained, define H̃ = HFRF and Q = FH
RFFRF.

Then, the digital precoder design problem can be written as

maximize
FBB

log2 det

(
INs +

ρ

σ2
nNs

H̃FBBF
H
BBH̃

H

)
(10a)

subject to trace
(
QFBBF

H
BB

)
= Ns, (10b)

which has the well-known water-filling solution:

FBB = Q− 1
2 ŨΓ̃, (11)

where the columns of Ũ are taken from the right singular
vectors corresponding to the Ns largest singular values of
H̃Q− 1

2 , and Γ̃ is a diagonal matrix whose elements are de-
fined by the power allocated to the Ns data streams [7]. In
Algorithm 1, FBB is obtained in step 9.

Table 1 presents the per-iteration complexity and the
number of iterations of Algorithm 1 compared with those of
MO-AltMin [6], AO [7], and OMP [30]. First, these com-
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Fig. 2. Normalized training loss of ManNet with Nr = NRF = Ns = 4,
Nt = {64, 128}, and L = {6, 7}.
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Fig. 3. SE performance of ManNet-HBF with Nr = NRF = Ns = 4,
Nt = {64, 128}, and L = {6, 7}.

pared schemes require CMO-AltMin = I in
MOI

out
MOO(2N2

t NRFNs),
CAO = NtNRFIAOO(2N3

t NRF), and COMP = NRFO(N2
t NRFNs)

complex operations, respectively. Here, I in
MO, Iout

MO, and
IAO denote the number of inner and outer iterations for
MO-AltMin and the number of iterations for AO, respec-
tively. Algorithm 1 has a total complexity of CManNet-HBF =
COMP + CManNet, where CManNet = LO(8N2

t N
2
RF) real opera-

tions, dominated by the computation in step 4. The required
number of iterations is fixed as L, the number of network
layers. Note that BTB and BT z need to be computed only
once and do not change over the layers, and that ManNet
requires only element-wise vector multiplications/additions
(see step 5), which explains its low complexity. In general,
L ≪ Nt and L ≪ I in

MOI
out
MO, while L is of the same order as

NRF. For example, with Nt = 128, Nr = Ns = NRF = 4,
ManNet needs only L = 7 layers, whereas our simulations
show that I in

MOI
out
MO = 648 to achieve a convergence tolerance

of 10−3. Thus, it is clear that CManNet-HBF ≪ CMO-AltMin,
CManNet-HBF ≪ CAO, and CManNet-HBF ≈ 2COMP.

4. SIMULATION RESULTS
Here we provide numerical results to demonstrate the per-
formance of ManNet-HBF. We assume scenarios with Nr =
NRF = Ns = 4, Nt = {16, 64, 128, 256}, and various num-
bers of layers for ManNet: L = {4, 6, 7, 10}. The chan-
nel realizations are generated as in [6]. Specifically, we as-
sume the Saleh-Valenzuela model for the channel H, with
the numbers of clusters and paths and the average power of
each cluster being set as 5, 10, and 1, respectively, and we
assume that the azimuth/elevation angles of departure/arrival
follow a Laplacian distribution with a uniformly distributed
mean over [0, 360◦) and an angular spread of 10◦. ManNet
is implemented using Python with the Pytorch library and a
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Fig. 4. SE performance and run time of ManNet-HBF with Nt ∈ [16, 256],
Nr = NRF = Ns = 4, and SNR = 10 dB.

Tesla V100-SXM2 processor. For the training phase, a de-
caying learning rate of 0.97, an initial learning rate of 0.0001,
and t = 0.1 are used. For comparison, we consider optimal
fully digital beamforming (DBF), MO-AltMin [6], AO [7],
and OMP [30]. The signal-to-noise ratio (SNR) is defined as
SNR = ρ/σ2

n .
We first show the loss obtained in (9) during training Man-

Net with Nt = {64, 128} in Fig. 2. It is seen for both cases
that the loss decreases and essentially converges after about
1500 epochs. Furthermore, OMP allows a better convergence
compared with the random initialization. As the loss function
(9) also measures the objective in (3), the convergence of the
training loss reflects the ability of ManNet to solve (3).

In Figs. 3 and 4, we show the SE and run time of
ManNet-HBF. While the AO and MO-AltMin methods are
near-optimal, the OMP approach exhibits a significant per-
formance loss in all the considered scenarios. On the other
hand, ManNet-HBF achieves almost the same performance
as MO-AltMin for all SNR and Nt. For example, at 10
dB SNR and Nt = 128, it attains 98.51%, 98.62%, and
129.29% of the SE achieved by AO, MO-AltMin, and OMP,
respectively. ManNet-HBF is further shown to be the fastest
approach among the near-optimal schemes in Fig. 4(b) with
a run time of only 0.001 s, which is about 196 and 13250
times faster than AO (1.96 s) and MO-AltMin (13.25 s), re-
spectively, at Nt = 128. In particular, its time complexity
gain is more significant when Nt increases. This show that
ManNet-HBF achieves a remarkable complexity reduction
with only a marginal loss in performance compared to the
conventional approaches.

5. CONCLUSION
The nonconvexity and high-dimensional variables have im-
posed significant challenges to HBF designs in the literature,
which have usually required cumbersome iterative proce-
dures. We have overcome these difficulties by proposing the
efficient ManNet-HBF scheme based on unfolding Rieman-
nian manifold minimization. In this scheme, the lightweight
ManNet produces the analog precoder with only several lay-
ers and sparse connections in each, which explains the com-
putational and time efficiency of the ManNet-HBF scheme.
Our extensive simulation results have demonstrated that the
ManNet-HBF has superior performance with lightweight
implementation, low complexity, and fast execution.
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