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ABSTRACT
Deep neural networks have achieved remarkable performance
in retrieval-based dialogue systems, but they are shown to be
ill calibrated. Though basic calibration methods like Monte
Carlo Dropout and Ensemble can calibrate well, these meth-
ods are time-consuming in the training or inference stages. To
tackle these challenges, we propose an efficient uncertainty
calibration framework GPF-BERT for BERT-based conversa-
tional search, which employs a Gaussian Process layer and the
focal loss on top of the BERT architecture to achieve a high-
quality neural ranker. Extensive experiments are conducted
to verify the effectiveness of our method. In comparison with
basic calibration methods, GPF-BERT achieves the lowest
empirical calibration error (ECE) in three in-domain datasets
and the distributional shift tasks, while yielding the highest
R10@1 and MAP performance on most cases. In terms of
time consumption, our GPF-BERT has an 8× speedup.

Index Terms— Uncertainty, Calibration, Gaussian Pro-
cess, Dialog Response Retrieval

1. INTRODUCTION

Dialog response retrieval models based on deep neural net-
works (DNNs) primarily focus on modeling the relevance be-
tween context and responses and have achieved impressive
performance [1, 2, 3]. However, these models always suffered
from over or under confidence due to the poor calibration of
DNNs [4]. As a result, it is difficult to determine whether the
predictions are reliable. This attribute is essential for distribu-
tion shifts tasks and safety-critical areas since erroneous pre-
dictions can result in far more significant consequences than
not making any prediction at all [5]. Therefore, an ideal di-
alog model should exhibit confidence in its predictions while
also recognizing situations where its predictions may be in-
correct and uncertain.

Uncertainty modeling has been touched in previous work
on dialog systems. Monte Carlo (MC) Dropout [2, 3, 6] and
Ensemble [2, 7] have emerged as two of the most promi-
nent uncertainty estimation methods for deep retrieval net-
works. While Ensemble trains independently multiple models
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using stochastic gradient descent, MC Dropout trains a single
stochastic network by dropping different subsets of weights
simultaneously in train and test time [7]. Unfortunately, MC
Dropout necessitates carrying out several forward passes and
Ensemble becomes computationally expensive. This poses a
significant challenge, particularly in light of the widespread
adoption of large transformer architectures like BERT [7].
Therefore, it is urgent to explore an efficient method to quan-
tify the uncertainty in deep neural retrieval models.

Gaussian Process (GP) [8] is a well-established frame-
work for evaluating uncertainty. As an input moves farther
away from the training data, the level of uncertainty in GP
predictions tends to increase [9]. However, GP is challenging
to scale to large datasets and improve the performance while
DNNs are computationally scalable enough to handle them
[9]. SNGP [10] combines the strengths of GP and DNNs,
utilizing spectral normalization [11] to the weights in each
residual layer, which can efficiently handle the large scale in-
puts and makes robust uncertainty-aware predictions. Unfor-
tunately, the application of SNGP has not been explored in
the retrieval-based dialog system.

So motivated, we attempt to investigate a simple and ef-
ficient approach for the well-calibrated dialog response re-
trieval models based on Gaussian Process. Specifically, we
add a neural GP layer to a deterministic BERT-like backbone
to improve the ability of uncertainty estimation and train the
model with focal loss [12] to achieve better calibration. Dif-
ferent from MC Dropout and Ensemble, our method only
needs to be performed by passing through a single forward
so that GPF-BERT achieves almost 8× speedup in terms of
inference time. To summarize, the main contributions of this
work are as follows:

• To our best knowledge, we first estimate uncertainty in
dialog tasks with SNGP. Furthermore, we propose an
efficient framework GPF-BERT to estimate uncertainty
combining the focal loss and SNGP.

• We conduct extensive experiments to compare the per-
formance of various calibration methods. Our method
yields the lowest ECE in three in-domain datasets and
the distributional shift task while keeping performance.
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Fig. 1. An illustration of GPF-BERT prediction models for
dialog response retrieval.

2. METHODOLOGY

In this section, we present details of GPF-BERT, utilizing a
neural Gaussian Process layer to model uncertainty as shown
in Fig 1.

2.1. Model Architecture

For a dialog dataset, we denote a training set as a triples
{(Ui, ri, yi)}Ni=1, where Ui = {ui1, ui2, . . . , uit} is a dialog
context consisting of t utterances and yi is the response rel-
evance label yi ∈ {0, 1}, with a response candidate ri. The
whole dialog context with the candidate is fed into BERT-
like encoders, xi ={[CLS], ui1, . . ., uit, [SEP], ri}, where
the special token [CLS] denotes the sequence beginning and
[SEP ] separates the response from the contexts. For each
training example, the representation vector h(xi) of [CLS] is
the feature of this dialog.

For a latent representation hi = h(xi), the GP output
layer gi = g(hi) follows a multivariate normal distribution
a prior: g ∼ GP (0,K), where K is a N ×N kernel matrix.
For more details of GPs, refer to [8].

First, spectral normalization (SN) [11] involves decom-
posing the parameters W of each neural network layer using
SVD and subsequently constraining the maximum singular
value to 1. Briefly, the SN estimates the spectral norm ‖Wl‖2
using the power iteration method during each training step
and subsequently normalizes the weights according to the es-
timated norm as follows:

wl =

{
c ∗Wl/ ‖Wl‖2 if c < ‖Wl‖2
Wl otherwise

(1)

To approximate the kernel matrix with a low-rank ap-
proximation, GPF-BERT uses a technique known as random
Fourier features (RFF) [13] as K = ΦΦT (Φ ∈ RN×L),
where L denotes the dimensionality of the latent space:

g ∼ GP (0,ΦΦT ),Φi =
√

2/L ∗ cos(−Whi + b) (2)

Φi contains a fixed weight matrix W with entries sampled
from N(0, 1), and a fixed bias vector b with entries sampled
from U(0, 2π).

Finally, the GP layer as a neural network layer [14] with
learnable output weights β ∼ N(0, I) according to the RFF

approximation to the GP prior.

g(hi) =
√

2/L ∗ cos(−Whi + b)Tβ (3)

Note that the use of random Fourier features (RFF) to lin-
early transform the GP helps to overcome the curse of dimen-
sionality and yield good performance with finite data. How-
ever, this technique may also result in feature collapse, which
can compromise model robustness, particularly when deal-
ing with distributional shifts. Therefore, we deploy SN on
the weights, which enforces the feature extractor to be bi-
Lipschitz to mitigate feature collapse [15].

Due to the lack of conjugacy between the classified like-
lihood function and a Gaussian prior, we resort to using the
Laplace approximation to quantify uncertainty [10]. The
maximum a posteriori (MAP) solution is denoted by β̂ and
the Laplace posterior for GP under the RFF approximation
can be expressed as:

p(β|D) ∼ GP (β̂, Σ̂k), Σ̂−1k =
∑N
i=1 p̂i(1− p̂i)ΦiΦTi + I

(4)
During minibatch training, β̂ is updated via regular SGD with
respect to the loss function and Σ̂−1t is updated cheaply using

Σ̂−1t = α ∗ Σ̂−1t−1 + (1− α) ∗
∑M
i=1 p̂i(1− p̂i)ΦiΦTi (5)

where t indexes update steps, M is the mini-batch size, p̂i is
the softmax probability and α is a small scaling coefficient.

For a given feature vector x∗ of a query-response pair,
GPF-BERT computes the posterior mean m̂(x∗) = ΦTβ and
the variance K̂(x∗) = ΦT Σ̂Φ. Finally, the predictive distri-
bution is written as p = exp(m)/

∑
i exp(mi) where m ∼

N(m̂, K̂) and we calculate its posterior mean using mean-
field approximation [16] for lower computation.

2.2. Loss Function

The conventional cross-entropy loss assigns the same weight
to individual samples on a mini-batch. However, there are
several low-confidence samples hard to classify. Although
the high-confidence samples have a small loss, their cumula-
tive loss value is still greater than the low-confidence samples
due to the large number, dominating gradient and producing
bad performance. That is just an important reason for poor
calibration of cross-entropy [17].

In this work, our GPF-BERT utilizes focal loss [12],
which focuses more on the uncertain samples by reducing the
weight of high-confidence samples. Namely, by reducing the
weight of the easy samples, the model focuses more on the
hard samples when training.

Lfocal = −(1− p̂)γ log(p̂) ≥ −(1− γp̂)logp̂
= Lce − γH[p̂] ≥ KL(q||p̂)− γH[p̂]

(6)

When training, focal loss ensures minimization of the KL
divergence whilst simultaneously increasing the entropyH[p̂]



[17]. The high entropy can help prevent the model from be-
coming overconfident and thereby improve calibration. We
use Lce and Lfocal to respectively denote the cross-entropy
loss and the focal loss with hyperparameter γ ≥ 1.

3. EXPERIMENTS

3.1. Experiments Setup

Datasets: We utilize three large-scale conversational re-
sponse ranking datasets in our experiments. MS Dialog [18]
contains 246,000 context-response pairs culled from over the
Microsoft Answer community. MANtIS [19] contains 1.3
million context-response pairs including 14 different domain.
Ubuntu Dialogue Corpus v1.0 (UDC) [20] is consisted of
almost 1 million context-response pairs.
Metrics: We use R10@1 and MAP to measure the retrieval
performance and ECE [21] for calibration. We divide the in-
terval [0, 1] into M = 10 equispaced bins. The ECE calcu-
late a weighted average of the absolute difference between
the accuracy Ai and confidence Bi of each bin: ECE =∑M
i=1

|Bi|
N |mean(Ai)−mean(Bi)|.

Baselines: We compare BERT [1] with other common cali-
brated methods. MC Dropout [2] approximates Bayesian in-
ference using dropout during training and testing, and pro-
duces a predictive distribution by performing multiple for-
ward passes. In this paper, we use 10 forward passes based
on a BERT model. Ensemble [2] independently trained sev-
eral models and integrate their predictions a model integrat-
ing predictions of BERT and MC Dropout models. SNGP
[10] adds a weighting normalization step during training and
replaces the dense output layer with a GP layer.
Implementation Details: We use 12-layered BERT as the
backbone, each encoder having 12 attention heads and a hid-
den dimension of 768. All the methods are obtained a latent
representation by extracting the [CLS] feature. The dropout
probability was set to 0.1 and the learning rate was set to 5e-6
using the Adam optimizer. Following recent research [2] that
employed finetuned BERT for dialog response ranking, we
randomly select nine responses from the list of all responses
as the negative samples when training. The hyperparameters
utilized for the deterministic variant are also employed for
each model architecture. In our experiment, we first train our
model for 1 epochs with a batch size of 16 on a cluster of 1
Tesla V100 with 16G memory. Simultaneously, all the ex-
periment results are the average over 5 runs along with the
standard error.

3.2. Results

In-domain. Table 1 reports the results of GPF-BERT and
all baselines on the MS dialog, MANtIS and UDC datasets.
From this table, GPF-BERT generally outperforms other

Table 1. Calibration (ECE) and effectiveness (R10@1, MAP).
” ↑ ” represents higher is better and ” ↓ ” means lower is
better.

R10@1↑ MAP↑ ECE↓

M
SD

ia
lo

g BERT 0.682±0.006 0.800±0.003 0.125±0.020
MC Dropout 0.673±0.005 0.796±0.003 0.110±0.020
Ensemble 0.680±0.004 0.800±0.003 0.115±0.019
SNGP 0.659±0.013 0.783±0.008 0.110±0.006
GPF-BERT 0.681±0.006 0.799±0.003 0.025±0.010

M
A

N
tI

S

BERT 0.590±0.012 0.713±0.010 0.169±0.028
MC Dropout 0.591±0.011 0.713±0.009 0.152±0.02
Ensemble 0.592±0.011 0.713±0.010 0.157±0.026
SNGP 0.597±0.021 0.719±0.013 0.147±0.010
GPF-BERT 0.614±0.017 0.729±0.012 0.025±0.009

U
D

C

BERT 0.810±0.003 0.880±0.002 0.037±0.001
MC Dropout 0.809±0.003 0.878±0.002 0.033±0.001
Ensemble 0.810±0.003 0.879±0.002 0.034±0.001
SNGP 0.806±0.001 0.877±0.001 0.033±0.001
GPF-BERT 0.818±0.001 0.885±0.001 0.016±0.002

single-model approaches in ECE across various datasets with
a reduction of less than 1% in R10@1 and MAP.

Specifically, BERT, which is a vanilla model without any
calibration, usually performs well but is not well calibrated.
The calibration of MC Dropout and Ensemble exceeds BERT,
which verifies that Bayesian models exhibit greater expres-
siveness in their ability to convey confidence, but unfortu-
nately still obtain poor calibration. Compared to the prior
methods, the ECE of GPF-BERT is almost lowest, which is
reduced by almost 10%, 14% and 2% respectively in three
datasets, while the R10@1 and MAP are better or less than
1% decrease. Namely, GPF-BERT includes uncertainty in-
formation while keeping R10@1 and MAP performance in
in-domain datasets.
Distributional Shift. In addition to using the uncertainty es-
timation for in-domain datasets, we also train the model using
the training set from one dataset, i.e. train set, and evaluate it
on a different dataset’s test set, which is also known as domain
generalization or distributional shift tasks. We record all the
retrieval performance and calibration in Table 2. As shown,
we observe that SNGP was reduced by up to 4% when com-
pared to the BERT, MC Dropout and Ensemble. Moreover,
the GPF-BERT achieves a substantial decrease up to 10% to
the upper calibration bound under the SNGP framework, even
though the R10@1 and MAP of GPF-BERT is lower in distri-
bution shift tasks. This confirms that GP-based retrieval mod-
els will have the more robust expressiveness to convey con-
fidence in distributional shift tasks. According to the results
of SNGP and GPF-BERT, we find that the focal loss plays an
important role in calibration.
Efficiency. One of the most critical challenges to overcome
is the computational cost when employing Bayesian to cap-
ture uncertainty. We analyze the efficiency of GPF-BERT in
terms of parameter number and inference time in the MS Dia-
log dataset in Table 3. Compared to MC Dropout and Ensem-



Table 2. Calibration (ECE) and effectiveness (R10@1, MAP) for distributional shift tasks. ”↑” represents higher is better and
”↓” means lower is better. All the models are trained in one dataset and test in the other dataset.

Train Test Metric BERT MC Dropout Ensemble SNGP GPF-BERT

MS Dialog

MANtIS
R10@1↑ 0.378±0.024 0.357±0.017 0.369±0.020± 0.385±0.040 0.381±0.033
MAP↑ 0.538±0.018 0.524±0.012 0.533±0.015 0.543±0.030 0.540±0.023
ECE↓ 0.343±0.035 0.328±0.045 0.331±0.037 0.307±0.011 0.206±0.054

UDC
R10@1↑ 0.609±0.009 0.600±0.007 0.606±0.008 0.602±0.007 0.612±0.014
MAP↑ 0.736±0.005 0.730±0.004 0.734±0.004 0.731±0.004 0.737±0.009
ECE↓ 0.109±0.011 0.092±0.011 0.097±0.009 0.085±0.003 0.026±0.016

MANtIS

MS Dialog
R10@1↑ 0.430±0.069 0.418±0.060 0.427±0.065 0.363±0.108 0.452±0.037
MAP↑ 0.598±0.058 0.591±0.050 0.596±0.054 0.548±0.089 0.619±0.026
ECE↓ 0.514±0.037 0.497±0.040 0.503±0.037 0.485±0.017 0.364±0.019

UDC
R10@1↑ 0.662±0.008 0.660±0.010 0.662±0.009 0.656±0.013 0.659±0.015
MAP↑ 0.769±0.008 0.768±0.006 0.769±0.006 0.766±0.009 0.768±0.009
ECE↓ 0.071±0.006 0.061±0.006 0.064±0.006 0.059±0.008 0.025±0.011

UDC

MS Dialog
R10@1↑ 0.324±0.031 0.290±0.065 0.312±0.072 0.406±0.092 0.431±0.074
MAP↑ 0.513±0.072 0.484±0.064 0.503±0.069 0.581±0.072 0.603±0.059
ECE↓ 0.616±0.031 0.622±0.026 0.610±0.030 0.607±0.034 0.528±0.042

MANtIS
R10@1↑ 0.250±0.045 0.220±0.038 0.240±0.044 0.270±0.027 0.283±0.035
MAP↑ 0.418±0.037 0.389±0.032 0.408±0.036 0.437±0.021 0.447±0.029
ECE↓ 0.510±0.041 0.537±0.037 0.508±0.040 0.494±0.032 0.400±0.045

Table 3. Parameters and inference time.
models BERT MC Dropout Ensemble GPF-BERT
Parameters(M) 413.26 413.26 826.52 453.55
Time(min) 6.80(1×) 65.00(9.56×) 71.80(10.56×) 7.87(1.16×)

ble, GPF-BERT has a significant decrease (at least 8 times) in
inference time. While not completely free, GPF-BERT only
adds negligible computational cost, but it greatly improves the
calibration, which facilitates adaptation to other models.

We believe that GP maintains a distribution over functions
rather than model parameters, which enables GPF-BERT to
improve uncertainty calibration for dialog response retrieval
models. In addition, according to a recent theorem [22] that
capturing uncertainty information and correcting overconfi-
dence can be achieved by making only the last layer of a
model in binary classification, we can assume that adding a
GP layer is Bayesian enough so that GPF-BERT can achieve
better calibration.

3.3. Ablation Study

To understand the impact of focal loss on calibration improve-
ment, we conducted a straightforward ablation study on the
in-domain dataset MS Dialog and its two distribution shift
tasks as shown in Fig 2. Obviously, the R10@1 and MAP of
GPF-BERT are lower than Focal but the calibration is much
better. Focal loss is a commonly used regularization method
and we found that it still facilitates calibration when applied
to SNGP. On the other hand, the difference in architecture be-
tween Focal and GPF-BERT demonstrates that the GP-based
model architecture is a better framework for calibration than
conventional models. That is to say, the model architecture
may be key to improving calibration.

ECE R@1 MAP ECE R@1 MAP ECE R@1 MAP0.0

0.2

0.4

0.6

0.8
Va

lu
es

MS Dialog MS Dialog_MANtIS MS Dialog_UDC

Focal
GPF-BERT

Fig. 2. Ablation study.

4. CONCLUSION

In this paper, we present an efficient uncertainty estimation
architecture GPF-BERT for reliable dialog response retrieval
tasks. GPF-BERT only adds a neural GP layer to a determin-
istic DNN to improve the ability of uncertainty estimation and
trains the model with focal loss to achieve better calibration
while maintaining the flexibility of deep neural networks. We
conducted extensive experiments to verify the effectiveness
including parameters and inference time. Furthermore, we
explored the relative contributions of focal loss to the effec-
tiveness improvement in the ablation study.
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