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ABSTRACT

Recent studies on pronunciation scoring have explored the effect
of introducing phone embeddings as reference pronunciation, but
mostly in an implicit manner, i.e., addition or concatenation of refer-
ence phone embedding and actual pronunciation of the target phone
as the phone-level pronunciation quality representation. In this pa-
per, we propose to use linguistic-acoustic similarity to explicitly
measure the deviation of non-native production from its native refer-
ence for pronunciation assessment. Specifically, the deviation is first
estimated by the cosine similarity between reference phone embed-
ding and corresponding acoustic embedding. Next, a phone-level
Goodness of pronunciation (GOP) pre-training stage is introduced
to guide this similarity-based learning for better initialization of the
aforementioned two embeddings. Finally, a transformer-based hier-
archical pronunciation scorer is used to map a sequence of phone
embeddings, acoustic embeddings along with their similarity mea-
sures to predict the final utterance-level score. Experimental results
on the non-native databases suggest that the proposed system signif-
icantly outperforms the baselines, where the acoustic and phone em-
beddings are simply added or concatenated. A further examination
shows that the phone embeddings learned in the proposed approach
are able to capture linguistic-acoustic attributes of native pronuncia-
tion as references.

Index Terms— Linguistic-Acoustic Similarity, Phone Embed-
ding, Goodness of Pronunciation, Pronunciation Scoring.

1. INTRODUCTION

Pronunciation scoring is an essential component of Computer As-
sisted Pronunciation Training (CAPT) [1}15]. It is designed to auto-
matically assess second language (L2) learners’ speech pronuncia-
tions [|6,/7]]. In general, the degree of proficiency/pronunciation level
is measured as the amount of deviation of the L2 production from
the reference native production. A typical assessment scenario is as
follows: given a text prompt, the L2 learner is asked to read the text,
and a scoring system is used to give a score based on the learner’s
speech production.

Goodness of Pronunciation (GOP) [7] was a commonly used
feature in automatic pronunciation assessment, mispronunciation de-
tection, and related tasks [8H11]. In a deep neural network (DNN)
based system, GOP is computed as the ratio of log phone posterior
probability between the canonical reference phone and the hypoth-
esized phone with the highest posterior probability [[12]. It gives a
general-sense measurement of the pronunciation quality, i.e., a lower
value of GOP indicates a higher possibility of mispronunciation. To
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improve the mispronunciation detection performance of GOP, var-
ious methods have been proposed. Transition probability between
Hidden Markov Model (HMM) states was considered in [13]] and a
context-aware GOP score was investigated in [[14].

A comparison-based framework was investigated in [15H17],
where an utterance spoken by native speakers was adopted as a ref-
erence, and divergence-related features computed by dynamic time
warping (DTW) between speech representations of native speakers
and L2 learners were used to quantify the pronunciation deviation.
However, parallel reference speech may not be available in real-
world applications. Thus, it was considered to use phone embedding
as the reference for pronunciation assessment [[18-24]]. One-hot rep-
resentations of phoneme labels are fed into a trainable embedding
layer to generate phone embedding vectors. The phone embeddings
were used along with the corresponding phone-level acoustic em-
beddings for pronunciation score prediction. Addition [[18-22] and
concatenation [23}[24] of reference phone embedding and phone-
level acoustic embedding are widely used methods to calculate
phone-level pronunciation quality representation. The resultant
representation is assumed to capture the deviation of non-native pro-
nunciation from the reference production. However, either addition
(add_phone) or concatenation (concat_phone) operation does not
explicitly measure the degree of mismatch between what one native
speaker pronounces (i.e., phone embedding) and how they actually
pronounce (i.e., phone-level acoustic embedding). We hypothesize
that explicit measurement of the degree of phone-level pronunciation
deviation would better reflect L2 learners’ pronunciation quality.

In [25], a linguistic-acoustic similarity based accent shift
(LASAS) model was proposed for accent recognition. The ac-
cent shift is intended to capture the pronunciation variants of the
same word in different accents. It is explicitly modeled by the simi-
larity of acoustic embedding and aligned text anchor vectors. In the
present study, we propose to use cosine similarity between a refer-
ence phone embedding and the corresponding acoustic embedding
to explicitly measure the mismatch between standard and non-native
pronunciation. A phone-level GOP pre-training process is devel-
oped to guide similarity-based learning for better initialization of
the two embeddings. Lastly, a bottom-up hierarchical pronunciation
scorer [19] is used to map a sequence of phone embeddings, acoustic
embeddings along with the proposed similarity measures to predict
the final utterance-level score. Experimental results show that the
proposed system significantly improves the score prediction perfor-
mance in terms of Pearson correlation coefficients (PCC) compared
to its counterpart, where phone and acoustic embeddings are simply
added or concatenated. In addition, it is shown that the learned
phone embedding can capture linguistic-acoustic characteristics of
native pronunciation as references.
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Fig. 1: (a) illustrates the hierarchical architecture of the pronuncia-
tion scoring network. (b) and (c) show the two conventional methods
of combining phone-level acoustic embeddings and phone embed-
dings. (d) shows the proposed linguistic-acoustic similarity method.

2. METHOD

In this section, we first give an overview of the hierarchical pro-
nunciation scoring network, followed by an introduction to the pro-
posed methods, including linguistic-acoustic similarity measure and
phone-level GOP pre-training.

2.1. Hierarchical Pronunciation Scorer

As shown in Figurem (a), the hierarchical pronunciation scoring net-
work takes frame-level features as input, and aggregate and trans-
form them into phone-level, word-level and utterance-level features
layer by layer. The final output is a pronunciation score [[19].

Previous research [[18-24]] was focused on different implementa-
tions of representation learning for phone-level pronunciation qual-
ity aiming to model the deviation of L2 pronunciation from refer-
ence native pronunciation. Figuresm(b) and (c) depicts two such at-
tempts. The vector in blue represents acoustic embeddings at phone-
level after preprocessing network and the vector in yellow, i.e., the
reference phone embedding, represents the native pronunciation of
the current phone.

Given a pair of read speech utterance and text prompt, an acous-
tic model is used to extract frame-level features (e.g., deep feature
as in [19]) and phone-level alignment. Phone-level acoustic features
are obtained by averaging the aligned feature frames of each phone
segment, denoted as X € RP'*N, N is the number of phones, and
D1 is the feature dimension. Then, the phone-level acoustic feature
and the corresponding phone ID are used as the input of the prepro-
cessing network as shown in Eq. (1). A phone embedding layer en-
codes the phone ID e into phone embedding vectors, E, € RP 2xN,
A fully connected (FC) layer projects the phone-level acoustic fea-
tures X into the same dimension as phone embedding, denoted as

H, € R°>*N | D2 denotes the embedding dimension. H,, is termed
as the phone-level acoustic embedding in this paper.

H,, E, = 7(X,e), (€]

where F(-) denotes the preprocessing network.
Subsequently, the phone-level projection network takes H, and
E, as input and generates a pronunciation quality representation,
denoted as Pg:
Po =PH,, Ep), 2

where P(-) represents the phone-level projection network. Specifi-
cally, it operates in two different ways:

add_phone,

— {MLP(HG + EP)7 (3)

@ MLP([H,; E,]), concat_phone.
where MLP refers to the multilayer perceptron function and [;] de-
notes the concatenation of two vectors.

Finally, the utterance-level pronunciation score § is predicted as,

9 =U(Tw(Au(T(PQ)))), ©)

where T (+) and T, (+) are the phone-level and word-level Trans-
formerEncoder networks [26], respectively. The .4,, denotes the
operation of averaging phone-level features to be word-level and U
refers to the utterance-level output processing network.

2.2. Proposed Method
2.2.1. Linguistic-Acoustic Similarity

Eq. (@) gives the two frequently used means of producing the phone-
level pronunciation quality representation. Neither add_phone nor
concat_phone explicitly measures the degree of mismatch between
what the native speaker should pronounce (i.e., phone embedding)
and how the L2 speaker actually pronounces (i.e., phone-level acous-
tic embedding). To investigate the effect of modeling this pronuncia-
tion deviation in a more explicit manner, this study proposes a novel
linguistic-acoustic similarity based learning method as illustrated in
Figure |I| (d). The phone-level pronunciation quality representation
Pg is calculated as in Eq. @) but in a slightly different way:

Po = [MLP([Hg; Ep)); ], 6]

where s denotes a linguistic-acoustic similarity measure, which is
given by the cosine similarity between H, and E,,,

s = cosine(Hq, E;) (6)

The computation of utterance-level predicted score ¢ remains
unchanged.

2.2.2. GOP Pre-training

GOP is widely used for measuring phone-level pronunciation quality
of non-native speech, i.e., how close the pronunciation is to that of a
native speaker [7]]. To enable the phone-level linguistic-acoustic sim-
ilarity to reflect pronunciation quality more accurately (e.g., a lower
similarity indicates a higher possibility of mispronunciation), we use
GOP score to guide the proposed similarity based learning. Figure
[2]shows the boxplot of the GOP pre-training of the phone-level pre-
processing network. Here, the used GOP score [12] for phone p is
calculated as follows:

GOP(p) = LPP(p) — mazeeq LPP(q), @)
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Fig. 2: The diagram of the phone-level GOP pre-training stage. Note
that only the preprocessing network is updated at this stage.

where p is the phone in consideration and () is the whole phone
set. LPP(p) is the log phone posterior and is computed as
logp(p|o; ts, te), where ts and t. are the start and end frame indexes
of phone p, and o are the corresponding acoustic observations. Note
that the phone-level time stamps and log posteriors are obtained
using the extra acoustic model described in Section[3.2.1]

Mean squared error (MSE) between the cosine similarity s and
phone-level GOP score g are used as the target loss function. We
normalize both s and g into a range of [0,1]. Note that only the
parameters of preprocessing network F(-), as shown in Eq. , are
optimized at this stage, which results in an updated version of the
phone-level acoustic embedding H, and phone embedding E,,.

3. EXPERIMENTAL SETUP

3.1. Datasets

Two L2 speech datasets are used in this study, namely Spee-
chocean762 and ByteRate. Speechocean762 [27] is an open-sourced
corpus designed for pronunciation assessment, in which 5,000 En-
glish utterances are collected from 250 learners. The corpus is split
into train/test sets of equal size, each with 2,500 utterances from 125
English learners. Each utterance is rated by five experts in a range
of 0 to 10, and the median value of the five scores is selected as the
final score. ByteRate is an internal dataset at ByteDance, including
a total of 10k utterances from 4k English learners. The train/dev/test
sets are split as 3k/5k/2k, respectively. Each utterance is rated by
three experts in a range of 0 to 4, and the final score is the average
of the scores by all three experts. For both datasets, a higher rating
indicates more native-like pronunciation and vice versa, and the
scores are normalized into a range of 0 to 1. The first language (L1)
of all L2 speakers is Mandarin.

3.2. Model Configurations
3.2.1. Acoustic Model

The deep feedforward sequential memory network and HMM, i.e.,
DFSMN-HMM, is adopted as the acoustic model [28]]. DFSMN con-
sists of 2 convolution layers and 24 FSMN layers followed by two
FC layers. The input features are 39-dimension Mel-frequency cep-
stral coefficients (MFCCs). The acoustic model is trained on about
970-hour English speech, including an internal corpus of 10 hours of
non-native English speech by L1 Mandarin learners and 960 hours

Table 1: The detailed structure of the proposed pronunciation scorer.
LN refers to LayerNorm. Concat. is short for concatenation. Note
that the time sequence information is omitted here.

Network \ Structure | in X out size
Preprocessin [FC, LN, Tanh] 512 x 32
p g [Embedding, LN, Tanh] Tx32
Concat. of H, and E,, [32,32] x 64
. [FC, ReLLU] 64 x 32
Projection MLP FC 33X 30
Concat. with s [32, 1] x 33
Phone-level [LN, FC, Tanh] 33 x 32
TransformerEncoder att.dim: 32, nhead: 4, 32 x 32
ff_dim: 32, nlayer: 1
Word-level .[FC, Tanh] 32 x 32
TransformerEncoder att.dim: 32, nhead: 4, 32 x 32
ff_dim: 32, nlayer: 1
Output [FC, Sigmoid] 32 x1

of native English speech from the Librispeech corpus (Libri) [29].
512-dimensional deep feature is extracted from the penultimate layer
of the acoustic model. The same acoustic model is used to force-
align speech with the corresponding text prompt to obtain phone-
level time stamps and compute GOP scores as shown in Eq. (7).

3.2.2. Pronunciation Scorer

Table[T] presents the detailed network configuration of the pronunci-
ation scorer. The output dimension of preprocessing, projection, and
TransformerEncoder networks is equal to 32 [[19]. For training the
pronunciation scoring network, MSE between the predicted scores
and the true scores is used as the loss function to be minimized.
The training setups for pronunciation scorer training and GOP pre-
training (Section[2.2.2) are the same. The Adam optimizer is utilized
with a learning rate of 0.002 [30]. The maximum number of epochs
is set as 50, and early stopping is activated if the loss stops decreas-
ing for seven consecutive epochs. It should be noted that the GOP
pre-training stage does not involve any additional speech data.

4. RESULTS AND ANALYSIS

In this section, we present the experimental results of the proposed
and baseline systems, analyze the effect of the GOP pre-training
stage by comparing system performance using acoustic models
trained on different amounts of non-native data, and further examine
the linguistic-acoustic characteristics captured by the learned phone
embeddings. For performance evaluation, PCC between machine-
predicted scores and human-predicted scores is calculated.

4.1. Performance of the Proposed and Baseline Systems

Table 2] presents the results of different systems on ByteRate and
Speechocean762 datasets, respectively. We first examine the effec-
tiveness of using phone-level linguistic-acoustic similarity for pro-
nunciation assessment. Compared to add_phone and concat_phone
baselines, the proposed method improves the performance by a large
margin on both ByteRate (1 0.06 PCC) and Speechocean762 (1 0.04
PCC) datasets. The results suggest that the proposed linguistic-
acoustic similarity can capture pronunciation deviation more effec-
tively for pronunciation scoring.
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Fig. 3: Similarity heatmaps of phone embeddings between different phones (show-case examples).

Table 2: The PCC results of the proposed and baseline systems.
Note that the proposed and baseline systems only differ in how to
produce that phone-level pronunciation quality representation.

Datasets ‘ ByteRate Speechocean762
GOP pretrain | X v X v
add_phone 0.764 0.781 0.598  0.610
concat_phone | 0.763 0.823 0.618  0.652
Proposed \ 0.825 0.858 0.644  0.702

We then examine the effectiveness of GOP pre-training for
pronunciation assessment. It is observed that, for all the three
approaches, add_phone, concat_phone and the proposed system,
the systems with GOP pre-training consistently outperform their
counter-parts in terms of PCC. The proposed method achieves the
best performance, with a PCC of 0.858 and 0.702 on ByteRate and
Speechocean762 datasets, respectively. Hence, we conclude that the
proposed phone-level linguistic-acoustic similarity framework with
GOP pre-training has a clear advantage over the baselines.

Table 3: The PCC results of the proposed system using two different
acoustic models (AM) trained with different amount of L2 speech.

Datasets ‘ ByteRate Speechocean762
GOP pretrain | X v X v
AM: Libri + 10h | 0.825 0.858 0.644  0.702

AM: Libri + 4000h | 0.860 0.893 0.704  0.766

4.2. GOP Pre-training Stage: Less Can Be More

Previous research has shown the benefits of introducing more non-
native data in acoustic model training for L2 pronunciation assess-
ment [19]21]]. Acoustic models trained with both native and non-
native data could provide more accurate phoneme segmentation of
the L2 speech, hence better L2 phone representations for subse-
quent modeling processes. Unfortunately, non-native data of large
size and high-quality annotation is not always available. In this
study, we further examine how the proposed GOP pre-training pro-
cess could help accommodate a lack of non-native speech data by
conducting two more experiments which differ only in the amount
of non-native data used during acoustic model training: 10 hours vs.
4,000 hours. The results are given in TableE[ which show that: (1)
Including more non-native data in acoustic model training improves

the system performance which is consistent with previous findings;
(2) GOP pre-training is beneficial for both the 10 hour and 4,000
hours of non-native data conditions; and (3) The results of including
10h non-native data with GOP pre-training are comparable with re-
sults including 4,000 hour non-native data without GOP pre-training,
suggesting that the GOP pre-training process could serve as an alter-
native when the amount of non-native data is limited.

4.3. Linguistic-Acoustic Attributes of the Phone Embeddings

In this section, we examine how (well) the learned phone embed-
ding could relate to linguistic-acoustic attributes of its corresponding
phoneme. In particular, we plot the similarity heatmaps between the
phonemes based on the cosine similarity of their respective phone
embeddings. The results for a group of vowels and a group of con-
sonants are given in FigureElas an example. In FigureEl (a) and (c)
show the results by the add_phone approach, (b) and (d) by the pro-
posed approach. Figure 3] (b) clearly shows the pattern that the six
vowels could be firstly divided into two clusters [UH, UW] and [AA,
AO, AH, AE], and the second cluster could be further divided into
two smaller clusters [AA, AO] and [AH, AE]. Specifically, the first
two clusters, i.e., [UH, UW] and [AA, AO, AH, AE], differ in terms
of vowel height, and the second in terms of tenseness. Similarly, in
Figure El (d), the six consonants seem to form two clusters [T, D]
and [SH, ZH, CH, JH], with the sounds in the first cluster being plo-
sives and those in the second one being fricatives or affricates. In
either the vowel or the consonant group, similar patterns could not
be observed from the phone embeddings obtained by the add_phone
approach. This shows that the phone embeddings learned by the pro-
posed approach could reflect linguistic-acoustic attributes of their
corresponding phonemes. Thus they are believed to provide more
accurate reference representation of phone-level pronunciation.

5. CONCLUSION

In this paper, we proposed to use linguistic-acoustic similarity as ad-
ditional feature to explicitly measure phone-level pronunciation de-
viation for pronunciation assessment. Moreover, a phone-level GOP
pre-training stage was also proposed, which leads to better network
initialization and more meaningful acoustic and phone embedding
learning. The experiments conducted on both ByteRate and Spee-
chocean762 datasets suggested that both linguistic-acoustic similar-
ity and GOP pre-training contribute to the performance improvement
in terms of PCC. It is also shown that the phone embeddings learned
in the proposed approach can capture linguistic-acoustic attributes
of standard pronunciation as reference. In the future, we plan to
improve the system by using more contextualized acoustic features
(e.g, wav2vec2.0) for the linguistic-acoustic similarity calculation.
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