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ABSTRACT

We study the single-channel source separation problem in-

volving orthogonal frequency-division multiplexing (OFDM)

signals, which are ubiquitous in many modern-day digital

communication systems. Related efforts have been pursued

in monaural source separation, where state-of-the-art neural

architectures have been adopted to train an end-to-end sep-

arator for audio signals (as 1-dimensional time series). In

this work, through a prototype problem based on the OFDM

source model, we assess—and question—the efficacy of us-

ing audio-oriented neural architectures in separating signals

based on features pertinent to communication waveforms.

Perhaps surprisingly, we demonstrate that in some configu-

rations, where perfect separation is theoretically attainable,

these audio-oriented neural architectures perform poorly in

separating co-channel OFDM waveforms. Yet, we propose

critical domain-informed modifications to the network pa-

rameterization, based on insights from OFDM structures, that

can confer about 30 dB improvement in performance.

Index Terms— Single-channel source separation, deep

learning, orthogonal frequency-division multiplexing, Fourier

features, neural architectures.

1. INTRODUCTION

Source separation is a long-standing problem of interest in

many engineering applications. Particularly challenging is the

single-channel source separation (SCSS) setting that has re-

cently gained more interest [1–4], corresponding to an under-

determined scenario, in the absence of spatial diversity. Most

prominently, SCSS with audio signals has received much at-

tention [5–7]. State-of-the-art solutions benefit from deep

learning approaches, many of which propose novel neural ar-

chitectures to achieve improved separation ability. For ex-

ample, the use of convolutional [8–10], recurrent [11] and
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attention-based [12] layer structures in the separation neural

network (NN) have been proposed, with varying degree of

success. Implicit to these methods are strategies to exploit

properties of typical audio signals. In fact, it is believed that

the features exploited by state-of-the-art neural architectures

are related to separability in the time-frequency space [13].

Beyond audio applications, source separation finds impor-

tant relevance to other domains, such as in radio frequency

(RF) and optical systems, for communication and sensing ap-

plications [14–20]. Across these domains, the raw data are

1-dimensional time series. Yet, the properties of RF/optical

waveforms differ from audio signals—e.g., these signals tend

to pack a large amount of information into a finite frequency

band (or channel), rendering them no longer sparse in the

time-frequency space. In fact, they may be overlapping in

this space—described as “co-channel”. While audio-oriented

NNs can work on time series inputs, and could also be just as

successful with other modalities, e.g., demonstrated with seis-

mic signals in [21]), it is uncertain if the same neural architec-

tures are also effective at separating communication signals.

Of particular interest to our work is one such type of

RF/optical signals, which modulates information through or-

thogonal frequency-division multiplexing (OFDM). While

OFDM waveforms form a subclass of digitally modulated

signals, it is one of the most ubiquitous modulation found

in modern data communications, for both wireless systems

(WiFi and 4G/LTE/5G) and optical systems. We also empir-

ically observe these waveforms to be a challenging class of

signals to tackle in data-driven SCSS [15, 22].

This work focuses on the SCSS of OFDM signals, and

the relevant neural architectural choices to capture informa-

tive features for signal separation. In particular, we consider

a prototype problem based on the OFDM model, posed such

that perfect separation of the signals is technically attainable

through the fast Fourier transform (FFT) algorithm with ap-

propriately chosen parameters. Yet, without prior knowledge

about the signal model, achieving this is not a simple task.

Under this setup, we study whether NN-based approaches can

learn to exploit the underlying OFDM structures for SCSS.

To the best of our knowledge, this work is the first to

assess the performance (and therefore, the ineffectiveness in

some regimes) of neural architectures from audio separation

when applied to OFDM waveforms, serving as an impor-
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tant benchmark. We also propose modifications, inspired by

OFDM structures, that confer orders of magnitude improve-

ment to the separation performance. The key takeaways are to

demonstrate how distinct and challenging digital communica-

tion signals can be for existing neural methods in SCSS, and

to propose judicious adaptations in advancing neural methods

for time-domain signals beyond the efforts in audio domain.

2. PROBLEM FORMULATION

Consider an observed 1-dimensional mixture of signals

y = s+ b, (1)

where s , [s[0] . . . s[N−1]]T ∈ C
N is our signal-of-interest

(SOI) to be extracted, and b , [b[0] . . . b[N − 1]]T ∈ CN is

the interference (signal-not-of-interest). The goal is to sep-

arate s from b, namely, estimate s from y with minimum

mean squared error (MSE) as the criterion. We assume that

the models for s and b are not known; however, we have a

dataset of M independent, identically distributed examples,

{(y(i), s(i))}Mi=1. This setup naturally lends itself to a data-

driven approach for the SCSS problem.

In this work, we consider an SOI and an interference that

are discrete-time OFDM waveforms, formally expressed as

s[n] =

P−1∑

p=0

K−1∑

k=0

gk,p r[n− p · (K + Tcp)− Tcp, k],

b[n] =

P−1∑

p=0

K−1∑

k=0

hk,p r[n− p · (K + Tcp)− Tcp, k],

r[n, k] , exp(j2πkn/K)1{−Tcp≤n<K},

(2)

for n ∈ {0, . . . , N − 1}, where K ∈ 2 ·N is the total number

of orthogonal complex sinusoid terms (also termed as subcar-

riers; this also corresponds to the FFT size). The coefficients

gk,p ∈ G, hk,p ∈ H are the modulated symbols, and G,H are

their alphabets (constellations), respectively. A cyclic pre-

fix (CP) is typically added before an OFDM symbol. Hence,

each OFDM symbol is described for the interval [−Tcp,K],
where Tcp ∈ N is the CP length, and K is the OFDM sym-

bol length (without CP). The signals span P OFDM symbols,

and their individual finite support is reflected by the finitely

supported function r[n, k].

In this setting, the observed mixture can also be viewed

as an OFDM waveform, with the coefficients being elements

from the superconstellation of the SOI’s and interference’s

symbols, i.e., the Minkowski sum A , G ⊕H, such that

y[n] =

P−1∑

p=0

K−1∑

k=0

ak,p r[n− p · (K + Tcp)− Tcp, k],

ak,p = gk,p + hk,p, ak,p ∈ A.

(3)

The existence of a surjective function f : A → G, i.e., every

element in A can be uniquely associated with an element in

the SOI’s constellation G, suffices for perfect separability.1

1Alternatively, a surjective function f : A → H.

2.1. Special Case: Real-valued OFDM Signals

In order to focus on the core aspects of this problem, namely

the underlying Fourier structures and finite coefficient sets

present in OFDM, we propose to examine the following sim-

plified (yet not simplistic) special case. Consider (2) with

P = 1, Tcp = N −K and N ∈ K · N, namely,

s[n] =

K−1∑

k=0

gk,0
︸︷︷︸

,gk

r[n− Tcp, k] =

K−1∑

k=0

gk exp(j2πkn/K), (4)

and similarly for b[n], y[n] with coefficients hk, ak, respec-

tively, such that the (periodic extensions of the) SOI and in-

terference are discrete Fourier series. Further, we impose the

conjugate symmetry constraint on the coefficients gk, hk,

1 g0 = gK/2 = 0 2 gk = g∗K−k, ∀k ∈ {1, . . . , K
2 − 1},

and similarly for hk, where z∗ denotes the complex conju-

gate of a complex number z. Consequently, the waveforms

generated by (4) are real-valued: s, b ∈ RN ⇒ y ∈ RN .

The purpose of focusing on this special case is to test the

ability of candidate neural architectures to capture, or learn to

exploit, the subcarriers’ orthogonality and the discrete con-

stellation set, with which perfect separation is attainable.

3. REGIMES OF METHODOLOGY

Before we consider data-driven methods and neural architec-

tures for separating OFDM signals of the form (4), we briefly

discuss conventional (informed) model-based approaches for

reference. Consider a frequency domain approach (i.e., using

FFT), where the SOI is reconstructed from the mixture’s spec-

tral coefficients, {ak}K−1
k=0 . The first step requires an exact

FFT size, which can be unknown, that preserves the orthog-

onality of the subcarriers. Otherwise, the spectral “leakage”

from neighboring subcarriers will typically result in a signifi-

cantly larger superconstellation, due to the loss of orthogonal-

ity (illustrated in Fig. 1(i)). Of course, for this, one has to es-

tablish a realizable method that extracts the underlying spec-

tral coefficients—corresponding to the surjective mapping of

the mixture’s symbol superconstellation to the SOI’s constel-

lation points (e.g. Fig. 1(ii)). The existence of such a routine,

albeit through explicit knowledge of source model parame-

ters, demonstrates a possible approach to achieve perfect sig-

nal separation performance for (4). However, this does not

correspond to a practicable algorithm in a more general sense,

e.g., with partial knowledge about the source models.

On the other hand, monaural separation architectures can

be used for an end-to-end signal separator without explicitly

requiring the source models. Since the latent sources in the

special case considered in Section 2.1 are real-valued, we can

adopt the neural architectures proposed in audio source sepa-

ration works, developed for real-valued time domain inputs.

For these audio-oriented methods, information pertaining

to the sources being a discrete Fourier series (or an OFDM

waveform) is not explicitly utilized. Clearly, an effective ar-

chitecture for this SCSS problem ought to learn to exploit

properties relating to the OFDM’s subcarrier structure and



Table 1. MSE (in decibels, dB) of the extracted SOI. Entries with MSE< 10−2 (i.e., −20 dB4) are in red; improvement of our

proposed architecture, compared to the best-performing benchmark method, is reported in parenthesis in the last row.

Case 1 Case 2 Case 3 Case 4
Disjoint BPSK+BPSK BPSK+4-PAM (Mixed) 4-PAM+4-PAM

Wave-U-Net [8] −57.246 dB −46.827 dB −4.663 dB −4.665 dB

Conv-TasNet [9] −40.790 dB −12.179 dB −1.060 dB −1.009 dB

Sudo-Rm-Rf [10] −37.023 dB −26.493 dB −12.855 dB −11.495 dB

Dual Path RNN [11] −41.425 dB −27.302 dB −0.671 dB −0.542 dB

DPTNet [12] −36.825 dB −33.652 dB −3.548 dB −2.432 dB

Modified Wave-U-Net −65.526 dB −47.558 dB −47.377 dB −41.156 dB
(Proposed) (↓ 8.280) (↓ 0.731) (↓ 34.522) (↓ 29.661)

−2 −1 0 1 2

0.0

0.5

1.0
Using True FFT Size

−2 −1 0 1 2

0

1
Using Mismatched FFT Size

0

BPSK Constellation 
(SOI example)

0

4-PAM Constellation 
(SNOI example)

0

Mixture Superconstellation of example

SOI gk= − 1 SOI gk = + 1

(i) (ii)

Fig. 1. Visualization of OFDM structure—(i) using the appro-

priate FFT size leads to orthogonality between subcarriers; a

mismatched FFT leads to a loss of orthogonality at the sub-

carrier frequencies; (ii) for an appropriate choice of discrete

constellations, a surjective mapping of points from the super-

constellation to an SOI symbol can be obtained.

discrete symbol constellations from data. Intriguingly, we

demonstrate that beyond a limited regime of this problem,

audio-based neural architectures fail to separate OFDM wave-

forms that are in fact perfectly separable. We then propose

certain domain-informed modifications that revive these ar-

chitectures, consequently leading to successful separation—

improving the figure of merit (MSE) by orders of magnitudes.

For the rest of this work, we focus on computational ex-

periments with parameters N = 4096, K = 64, Ksc = 28,

where Ksc corresponds to the (maximum) number of unique

nonzero coefficients (subcarriers) in this model.2 We consider

4 different cases of gk, hk, for k ∈ {1, . . . ,Ksc}:

Case 1: Disjoint frequency sets: gk = 0 when hk 6= 0
and vice versa, where nonzero indices are randomly chosen

once, and stay fixed thereafter. The nonzero coefficients

are drawn from a random continuous uniform distribution,

gk ∼ U [−
√
3,
√
3], hk ∼ U [−4

√
3, 4

√
3].

Case 2: “BPSK3-like” coefficients: gk ∈ {+1,−1} and

hk ∈ {+4,−4}.

Case 3: “Mixed” coefficients: gk ∈ {+1,−1} and

hk ∈ {+12/
√
5, +4/

√
5,−4/

√
5,−12/

√
5}.

Case 4: “4-PAM3-like” coefficients: gk ∈ {+3/
√
5,+1/

√
5,

−1/
√
5,−3/

√
5} and hk ∈ {+12/

√
5,+4/

√
5,−4/

√
5,−12/

√
5}.

2These parameters are based on 802.11n WiFi waveform properties [23].
3BPSK: Binary Phase Shift Keying; 4-PAM: 4 Pulse-Amplitude Modulation;

these are modulation schemes typical in digital communication signals.

We introduce the appropriate scaling factors on the source

components such that the SOI s has unit average power. We

set g0 = h0 = 0, and gk = hk = 0 for k ∈ [Ksc + 1,K/2],
and recall that for k > K/2, the coefficients are constrained

to have conjugate symmetry. In all cases, the average inter-

ference power is 16 times that of the average SOI power.

4. NEURAL ARCHITECTURES FOR SCSS

We now describe the details of our experiments. We then

present the separation performance, and compare how they

fare in the 4 different cases established earlier.

4.1. Implementation Details

To the best of our knowledge, there are no established base-

line NN methods for this OFDM SCSS problem. Hence, part

of our work is to train selected state-of-the-art NNs from au-

dio separation [8–12] for this problem, and assess their per-

formance to serve as our comparison benchmark. Asteroid,

the PyTorch-based audio source separation toolbox [24], is

used for state-of-the-art neural architectures, whereas Wave-

U-Net and its modified version (our proposed architecture,

detailed later) are implemented in PyTorch.5 The training and

validation sets comprise 90, 000 and 10, 000 independent re-

alizations of mixture-SOI pairs respectively. Adam optimizer

with a learning rate 10−4 is used to train the respective NNs

for 2 × 103 epochs, with early stopping after 100 epochs of

no improvement on validation. In Table 1 we report the MSE

performance of the selected neural architectures in the recon-

struction of the SOI, on a test set comprising 103 examples.

4.2. Performance of Audio-Oriented NNs

As expected, the audio-oriented NN models are all effective

in separating signals with disjoint frequency sets (Case 1),

i.e., masking/filtering the frequencies that make up the SOI s.

Yet, we see that many of these neural architectures can still

separate highly co-channel signals under some cases, as in

Case 2 with OFDM waveforms bearing BPSK symbols. The

models’ success in Case 2 indicates that the mechanisms of

these audio-based neural methods have the potential to sepa-

rate signals that overlap in time and frequency, i.e., deviating

from the proximity characteristics indicated in [13], thereby

4An approximation of the best separation performance reported in [8–12].
5Repository containing code and implementation details:

https://github.com/RFChallenge/SCSS_OFDMArchitecture.

https://github.com/RFChallenge/SCSS_OFDMArchitecture


Table 2. MSE (in dB) of the extracted SOI using the modified

Wave-U-Net with different first-layer kernel sizes.

Kernel Size MSE Kernel Size MSE

W = 15 −6.030 dB W = 65 −42.824 dB

W = 21 −5.621 dB W = 71 −42.099 dB

W = 31 −6.183 dB W = 81 −42.690 dB

W = 51 −16.319 dB W = 101 −41.156 dB

W = 63 −41.380 dB W = 201 −44.319 dB

reflecting the potential generalizability of some of these ar-

chitectures. Nonetheless, as we advance to consider more

complex constellation, such as 4-PAM (Cases 3 and 4), these

architectures are no longer as effective at separating these sig-

nals when trained with the configuration considered here.

5. OFDM DOMAIN-INFORMED ARCHITECTURE

We now propose modifications to one of the architectures

based on insights from OFDM signals. Thereafter, we review

possible justifications for the improvement attained by draw-

ing connections to OFDM’s Fourier structures, which in turn

leads to guidelines for domain-informed parameterization.

5.1. Proposed Neural Architecture Modifications

Referring to the model-based approach, we seek an NN that is

capable of approximating an appropriately sized FFT operator

(Fig. 1). Based on this insight, a natural modification to the

NN is to increase the number of filters (20× as many) and the

receptive fields of these filters on the first layer (kernel size

W = 101), which operates on the time-domain input. We

introduce these modifications to Wave-U-Net—the simplest

among those investigated. The last row of Table 1 reports the

substantial improvement in MSE due to these modifications.

To further lend credence to the role of first-layer kernel

size, we show the SCSS results on Case 4 using the modified

Wave-U-Net with different sizes in Table 2. Here, we see a

significant improvement in separation performance when ker-

nel sizes 63 and longer are used in the modified Wave-U-Net

(recalling that the true FFT size K = 64).

5.2. Discussion on Fourier Structures

Referring to (4), each time-domain sample is a sum of sta-

tistically independent random variables; by the central limit

theorem (CLT), each of these samples is marginally Gaus-

sian distributed as K → ∞. Note that even when a (fixed)

W ≪ K time samples are considered, they are asymptoti-

cally jointly Gaussian, unless they are exactly a period away

[25]. Yet, K consecutive time-domain samples are not jointly

Gaussian, as evident from the discrete (non-Gaussian) coeffi-

cient set.6 A large receptive field in the NN, particularly on

the raw input, may be related to the window (FFT) size where

one is able to capture the underlying non-Gaussianity.

To further illustrate this, we consider the empirical

marginal kurtosis of the latent representation obtained by

taking the W -order FFT of some length W .7 Fig. 2 shows the

6Indeed, the CLT cannot be invoked in this case.
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Fig. 2. Empirical marginal kurtosis of the latent representa-

tion (real part of FFT coefficients) versus window length W .

empirical kurtosis of the (real part of) coefficients extracted

across 2 × 106 independent realizations of y. We highlight

two key observations: 1) spikes appear at multiples of K/2;

and 2) the empirical kurtosis stays close to 3 when W < K
(resembling that of Gaussian random variables), but increases

for longer windows, departing from Gaussianity. We note

that the latter is true for (4), where a growing window leads

to more low-magnitude coefficients (with the same number

of non-zero subcarrier symbols), which in turn leads to a

heavy-tailed distribution of these latent coefficients.

These observations lead to two possible mechanisms

through which a long first-layer kernel is exploiting. First,

a long kernel has the representation power to approximate

the FFT of the exact order or its harmonics (the red circle

data points in Fig. 2). Second, a significantly long kernel can

process the signal in a regime where it is non-Gaussian, but

not necessarily exactly at the FFT size (the two colored re-

gions in Fig. 2). While the neural separation mechanism and

feature explainability are not the focus of this work, these are

potentially impactful aspects calling for further investigation.

We recognize that a deep NN ought to have a large effec-

tive receptive field through its stacked layers, even if the ker-

nel sizes of individual convolutional layers are short [27]. Yet,

we have observed that none of the deep NN models consid-

ered are as effective in Case 4, in contrast to what is achieved

through significantly long kernel on the first layer, operating

directly on the input itself. The disparity in performance re-

mains a question for further consideration.

6. CONCLUDING REMARKS

Our work reveals key insights into strategies for neural archi-

tecture choices for potential novel OFDM-based systems—

specifically, parameterization (mildly) informed by the FFT

size, corresponding to sufficiently long kernel sizes on the

first convolutional layer. Next steps include revisiting the gen-

eral model (2), which has more latent parameters that an ap-

propriate NN has to capture for SCSS. Of further interest is

studying the mechanism behind the modified Wave-U-Net ar-

chitecture proposed, and how that translates broadly to a more

effective NN architecture for OFDM waveforms.

7This is loosely based on kurtosis as a surrogate measure of non-Gaussianity,

as typical in algorithms, e.g., independent component analysis (ICA) [26].
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