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ABSTRACT

Personalized speech enhancement (PSE) models achieve promis-
ing results compared with unconditional speech enhancement mod-
els due to their ability to remove interfering speech in addition
to background noise. Unlike unconditional speech enhancement,
causal PSE models may occasionally remove the target speech by
mistake. The PSE models also tend to leak interfering speech when
the target speaker is silent for an extended period. We show that
existing PSE methods suffer from a trade-off between speech over-
suppression and interference leakage by addressing one problem at
the expense of the other. We propose a new PSE model training
framework using cross-task knowledge distillation to mitigate this
trade-off. Specifically, we utilize a personalized voice activity detec-
tor (pVAD) during training to exclude the non-target speech frames
that are wrongly identified as containing the target speaker with hard
or soft classification. This prevents the PSE model from being too
aggressive while still allowing the model to learn to suppress the
input speech when it is likely to be spoken by interfering speakers.
Comprehensive evaluation results are presented, covering various
PSE usage scenarios.

Index Terms— personalized speech enhancement, target speech
extraction, knowledge distillation.

1. INTRODUCTION

Remote meetings have become part of our daily lives in the rapidly
emerging hybrid work era. Causal and real-time speech enhance-
ment (SE) algorithms are now integrated into most teleconferencing
services to attenuate background noise. Meanwhile, personalized
speech enhancement (PSE) is gaining increased attention from the
research community. PSE utilizes additional cues such as a speaker
embedding vector of a target speaker to enhance only the speaker’s
signal even when interfering speech and background noise are both
present [1, 2, 3]. The PSE task may be regarded as a combination of
speech separation, enhancement, and speaker verification tasks.

Despite the advantage over SE, the current causal PSE methods
face two major problems, i.e., speech over-suppression and interfer-
ence leakage. Speech over-suppression refers to the problem of the
target speaker’s voice being identified as an interfering speaker and
wrongly removed. This problem is worse for the same-gender mix-
tures due to voice characteristic similarities between the target and
interfering speakers [4]. As reported by prior studies, speech over-
suppression negatively impacts automatic speech recognition (ASR)
accuracy [5] and human communication experiences [1].

The second problem, or interference leakage, means that the
PSE models often fail to remove interfering speakers when the target
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speaker is not present at all or for a sustained period. This problem
has yet to be fully investigated, as most prior works assumed the
target speaker to be actively speaking. In practical scenarios such
as video conferencing, the target speaker can be inactive or silent
for a long time. A naive solution for reducing the interference leak-
age would be to add inactive target speaker (ITS) samples in the
training data [6] and train the PSE model to generate zero signals
for the ITS samples. However, precisely identifying ITS frames is
challenging due to the causality constraint and the model size limita-
tion. Forcing the PSE model to generate zero signals for all the ITS
frames regardless of their difficulty levels results in increased speech
over-suppression. Previously proposed PSE models suffered from a
trade-off between the speech over-suppression and the interference
leakage by addressing only one problem at the expense of the other.

We propose a cross-task knowledge distillation approach to re-
duce both speech over-suppression and interference leakage and thus
overcome the trade-off between these two problems. Specifically, we
utilize a causal personalized voice activity detector (pVAD) to iden-
tify the frames in the ITS training samples that are wrongly classi-
fied as the target speaker (note that the ITS samples contain no target
speakers). We then modify the PSE loss function based on the pVAD
outputs to adjust the contribution of each frame. With the modified
PSE loss, we exclude or de-emphasize the misclassified frames as
these frames are difficult to handle, and including them during train-
ing can exacerbate the speech over-suppression. We show the effec-
tiveness of our proposed training method in different scenarios.

2. RELATED WORK

Several studies developed causal PSE models utilizing a speaker em-
bedding vector to extract the target speaker’s voice. [1, 2, 3, 7, 8].
Giri et al. proposed a perceptually motivated PSE model with low
complexity [2]. In [1], two real-time PSE models were proposed and
evaluated in various scenarios. Thakker et al. introduced an efficient
real-time PSE model with low computational cost [7]. [8] employed
a multi-stage and multi-loss framework to train a full band PSE.
In [9], a dual-stage PSE network is proposed where the target speech
magnitude is estimated in the first stage, and the clean phase infor-
mation is retrieved in the second stage. These studies paid limited
attention to the trade-off problem between speech over-suppression
and interference leakage.

Wang et al. proposed an asymmetric loss [5] for a target speaker
extraction system for speech recognition to mitigate the speech over-
suppression. The asymmetric loss penalizes the time-frequency bins
where the target speaker’s voice is over-suppressed. While it reduces
speech over-suppression, the asymmetric loss significantly increases
the interference leakage. [1] proposed a PSE model with ASR-based
multi-task training to alleviate the speech over-suppression problem.
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Fig. 1: Schematic diagram of E3Net training with cross-task knowledge distillation. (a) Misclassified frames are excluded from PSE loss. (b)
Noisy signal Y is used as the reference signal for misclassified frames. (c) Active target speaker probabilities are used as weights in PSE loss.
In (a), crossed-out frames are excluded from the loss computation.

A few recent studies attempted to address the interference leak-
age problem to handle the case where the target speaker is inac-
tive [6, 10, 11]. [11] and [10] proposed time-domain speaker ex-
traction models with a modified signal-to-noise (SNR) ratio loss for
the inactive target speaker scenario. [6] trained a target speaker ex-
traction model with ITS samples using a modified SNR loss that pre-
serves the input signal amplitude at the system’s output. To reduce
interference leakage, they utilized an extra speaker verification mod-
ule to detect if the extracted speech belonged to the target speaker.
However, this approach increases the computational cost and is un-
suitable for real-time processing. In this paper, we address both the
speech over-suppression and interference leakage problems in causal
PSE without increasing the inference cost.

3. SYSTEM DESCRIPTION

3.1. Baseline PSE and Problem
We build our PSE models based on the end-to-end enhancement net-
work (E3Net) architecture of [7] while the proposed approach is ap-
plicable to other model architectures. E3Net uses a learnable en-
coder and decoder. The encoded features are concatenated with a
speaker embedding vector (d-vector) and fed into a stack of long
short-term memory (LSTM) blocks. Each LSTM block consists of
two fully connected layers, an LSTM layer with residual connec-
tion, and layer normalization modules. On top of the last LSTM
block, it has a fully connected layer for generating feature masks.
They are multiplied with the encoded features and transformed into
a waveform with the decoder to estimate the target speaker audio.
The model is trained to minimize a power-law compressed phase-
aware (PLCPA) loss function, which is defined as [1]:

LS,Ŝ(t, f) = α
∣∣∣|S(t, f)|p − |Ŝ(t, f)|p

∣∣∣2 +

(1− α)
∣∣∣|S(t, f)|pejϕ(S(t,f)) − |Ŝ(t, f)|pejϕ(Ŝ(t,f))

∣∣∣2 , (1)

where Ŝ(t, f) and S(t, f) are the estimated and clean speech sig-
nals, respectively, at time t and frequency f in the short-time Fourier
transform domain. Operator ϕ calculates the argument of a complex
number. The loss to be minimized is obtained by averaging LS,Ŝ
over all time and frequency units. See [7] for further details.

E3Net is causal and was shown to achieve good accuracy with
a low computational cost. In [7], as with other prior models, the
E3Net model was trained by using a dataset that always contained
target speech signals. However, this training scheme promotes an
interference leakage behavior when the input signal does not contain
the target speaker at all or for a long time.

3.2. PSE Training with Cross-task Knowledge Distillation
A naive approach to address the interference leakage issue would be
to include ITS samples during training. An ITS sample is a noisy sig-
nal where the target speaker corresponding to the provided d-vector
is completely inactive or silent. For the ITS samples, a PSE model is
supposed to generate zero signals. Training the PSE model with the
ITS samples helps it learn to remove the interfering speech signals
when the target speaker is inactive. However, this simple approach
tends to make the trained model so aggressive that it frequently at-
tenuates the target speaker’s speech signal.

Our hypothesis about the root cause of the increased speech
over-suppression when the ITS samples are used during training is
as follows. Due to the causality constraint and the limited model
capacity for real-time operation, there will be some frames that are
difficult to identify as target speech or interference. Forcing the PSE
model to generate zero signals in these frames will encourage the
model to occasionally zero out the signal gain even when the target
speaker is present, worsening the speech over-suppression problem.

To circumvent this problem and break the trade-off between the
speech over-suppression and the interference leakage, we propose
a cross-task distillation approach. Specifically, we use a separately
trained causal personalized voice activity detection (pVAD) model
to detect the challenging frames in the ITS training samples and ex-
clude them from the PSE loss calculation. The pVAD model per-
forms two-way classification for each frame to produce the posterior
probability of each frame being spoken by the target speaker or not.
Our pVAD model is based on a modified E3Net architecture. Instead
of a learnable encoder, the pVAD model adopts 40-dimensional log
Mel-filterbank energies as input by using the same window and hope
size as the E3Net PSE model. The masking and decoder layers are
replaced with a softmax layer for classification. The interference-
only time frames of the ITS samples that the pVAD model misclas-
sifies as containing the target speech are regarded as the challenging



frames and removed from the PSE loss computation either with hard
or soft decisions, as described below.

We examine three methods to modify the PSE loss for handling
the misclassified frames by pVAD. In the first method, we explicitly
exclude the misclassified frames from the PSE loss:

LτE(t, f) = cτ (t)LS,Ŝ(t, f), (2)

where

cτ (t) =

{
1 if pts(t) < τ

0 otherwise
, (3)

with pts and τ being the frame-wise target speaker posterior prob-
ability generated by the pVAD model and a threshold, respectively.
Fig. 1 depicts the diagram of the proposed loss functions. For frame
t, the target speaker is considered active by the pVAD model when
cτ (t) = 0 and inactive when cτ (t) = 1. We use Eq. (2) as the PSE
loss function to exclude the contribution of the misclassified frames
in the ITS samples. Alternatively, the second method leaks the mis-
classified frames by using the noisy signal Y as the reference signal:

LτM (t, f) =

{
LS,Ŝ(t, f) if cτ (t) = 1

LY,Ŝ(t, f) otherwise
. (4)

This method alleviates target speaker over-suppression at the cost of
slightly increased interference leakage. In the third method, we ad-
just the contribution of each frame by using the active target speaker
probability as a weight in the PSE loss calculation:

LP (t, f) = (1− pts(t))LS,Ŝ(t, f). (5)

Intuitively, Eq. (5) reduces the loss contribution from misclassified
frames and instead emphasizes the frames that are correctly pre-
dicted as an inactive target speaker. Unlike the previous methods,
Eq. (5) does not require the threshold. Note that the proposed cross-
task knowledge distillation scheme is applied only to the ITS training
samples and that we use Eq. (1) as the loss function for the training
samples containing the target speech.

4. EXPERIMENTAL RESULTS

We conducted a comprehensive test for the proposed training method
by using datasets covering various conditions and performance met-
rics to evaluate different aspects of PSE systems.

4.1. Datasets
The evaluation was carried out based on simulated datasets. Room
impulse responses (RIRs) were generated by using the image method
with reverberation time (T60) between 0.15 and 0.6 seconds. In our
simulation, we assumed the target speaker to be closer to the mi-
crophone than the interfering speaker, which seems a reasonable as-
sumption for telecommunication applications. The target speaker’s
distance to the microphone was in the range of (0, 1.3] m, while the
interfering speaker’s distance was greater than 2 meters.

We generated 2,000 and 50 hours of audio for the training and
validation datasets, respectively, based on the clean speech data of
the Deep Noise Suppression challange [12]. The clean speech sig-
nals were corrupted by the simulated RIRs and the noises from the
AudioSet and Freesound datasets [13, 14] with signal-to-noise ratios
(SNRs) in the range of [0, 15] dB. Half of the training and validation
utterances contained the target and interfering speakers as well as

noise with signal-to-interference ratios (SIRs) between 0 and 10 dB.
The other half contained samples comprising the target speaker and
noise only. The sampling rate was 16 kHz. The d-vectors had 128
dimensions and were extracted with a pre-trained Res2Net model
(see [15] for the details). For training PNS models with ITS sam-
ples, we also randomly replaced the clean target speech with a zero
signal in 15% of the above training data to simulate an inactive target
speaker scenario. We refer to the training datasets without and with
the ITS samples as Base and Base/ITS, respectively.

The voice cloning toolkit (VCTK) corpus was used to create the
test sets. The VCTK dataset contains clean utterances of 109 speak-
ers with different English accents. We set aside 30 utterances of
each speaker for d-vector extraction. To simulate a teleconference
session, we concatenated the noisy reverberant mixtures generated
from the same speaker’s utterances to create a single long audio file
for each speaker. The average audio file duration was 27.5 minutes.
The following three test sets were created to evaluate PSE models
in different scenarios. TS1: the target speech signal is corrupted by
both interfering speech and background noise; TS2: the target sig-
nal is corrupted by background noise; and TS3: the target speaker is
inactive for the whole session and the audio file includes only inter-
fering speakers and noise.

4.2. Evaluation Metrics
We used the word error rate (WER), deletion error rate (DEL), short-
time objective intelligibility (STOI) [16], and DNSMOS [17] for per-
formance measurement. DNSMOS is a neural network-based mean
opinion score (MOS) estimator which was shown to be highly corre-
lated with subjective quality ratings. To directly measure the target
speech over-suppression (TSOS) at the signal level, in addition to
DEL, we also used the TSOS metric proposed in [1]. For each time
frame, it is defined as

T SOS(t) =

{
1 if

∑
f LOS(t, f) > γ

∑
f |S(t, f)|p

0 otherwise
, (6)

where LOS represents the following over-suppression index:

LOS(t, f) =
∣∣∣ReLU(|S(t, f)|p − |Ŝ(t, f)|p)

∣∣∣2 . (7)

ReLU(.) is the rectified linear unit function, and γ is a threshold
value set at 0.1. Note that Eq. (7) is a special version of the asym-
metric loss proposed in [5]. Since reference clean utterances oc-
casionally contained modest non-speech sounds, we applied forced
alignment to ignore the time frames with no speech activity. To make
it easy to interpret the resultant numbers, we counted the segments
where the frame-level TSOS values continued to be one for one sec-
ond or longer. Finally, to measure the interference leakage in the
TS3 scenario, we calculated the energy difference between the input
and residual signals, i.e.,

∆N = 10 log |Y |2 − 10 log |Ŝ|2. (8)

4.3. Implementation Details
Following [7], we used an E3Net model consisting of 4 LSTM
blocks and an encoder-decoder pair with 2,048 filters. The dimen-
sions of the LSTM and fully connected layers of each LSTM block
were 256 and 1024, respectively. We set the window size to 20
ms and the hop size to 10 ms. During the training, we generated
mixtures on the fly by randomly selecting reverberated target and
interfering speech signals and noise samples. We also applied a



Table 1: Comparison of different PSE training methods for TS1, TS2, and TS3 scenarios. TS1 includes the target, interfering speaker, and
noise, while TS2 includes the target speaker and noise. TS3 includes only interfering speakers and noise. System U1 means unprocessed
audio, B∗ are baseline PNS models trained with Eq. (1), and S∗ systems are based on the proposed training methods. All models used E3Net.

System Train Loss TS1 TS2 TS3
data WER↓ DEL↓ DNSMOS↑ STOI↑ TSOS↓ WER↓ DEL↓ DNSMOS↑ STOI↑ TSOS↓ ∆N↑

U1 – – 43.0 3.99 2.92 78.9 0.00 13.4 2.00 2.98 85.0 0.00 0.0

B1 Base LS,Ŝ 31.9 4.56 3.56 88.8 1.35 16.8 2.55 3.80 93.4 0.45 46.5
B2 Base/ITS LS,Ŝ 35.9 8.28 3.49 85.5 3.95 20.3 6.17 3.70 89.7 2.54 148.3

S1 L0.5
E 34.7 4.46 3.52 88.6 1.66 17.8 2.53 3.75 93.3 0.37 148.5

S2 L0.25
E 34.5 4.65 3.53 88.6 1.98 17.2 2.68 3.76 93.2 0.72 148.4

S3 Base/ITS L0.1
E 35.1 4.90 3.50 88.2 2.06 17.8 3.01 3.74 92.8 1.15 148.3

S4 LP 35.7 5.73 3.50 87.5 1.80 18.4 3.48 3.72 92.4 0.48 148.6
S5 L0.5

M 35.6 4.73 3.48 87.8 1.19 18.1 2.65 3.70 92.9 0.32 145.6

Table 2: Experimental results with asymmetric loss function.

System Train Loss TS1 TS2 TS3
data WER↓ DEL↓ DNSMOS↑ STOI↑ TSOS↓ WER↓ DEL↓ DNSMOS↑ STOI↑ TSOS↓ ∆N↑

B1a Base LS,Ŝ + LOS 32.3 3.70 3.59 90.3 0.13 16.5 2.28 3.79 94.0 0.03 32.4
B2a Base/ITS LS,Ŝ + LOS 35.7 4.24 3.55 89.3 0.90 18.1 2.73 3.75 93.4 0.56 145.6
S4a Base/ITS LP + LOS 34.7 5.56 3.46 87.1 1.81 17.9 2.60 3.70 93.1 0.27 148.6

signal-domain variant of SpecAugument [18] to input mixtures. The
PLCPA loss parameters were set as p = 0.3 and α = 0.5. The value
of threshold τ was set at 0.5 by default for LτE and LτM losses.

Our pVAD model, used for the cross-task knowledge distillation,
was based on E3Net with 40-dimensional log mel-filterbank input,
three LSTM blocks, and a two-way softmax output layer. The model
was trained with a binary cross-entropy loss on the Base/ITS training
dataset. The ground-truth target speaker activity labels were gener-
ated by applying a DNN-based VAD model [19] to the underlying
clean speech signals.

4.4. Results and Discussions
Table 1 shows the experimental results. Two baseline E3Net models
were built based on PLCPA loss LS,Ŝ without the proposed cross-
task scheme. One was trained on the Base training dataset (B1),
and the other used the Base/ITS dataset (B2). We can observe that
including the ITS samples during training significantly reduced in-
terference leakage in the TS3 scenario. The average noise energy
of TS3 was 148.8 dB, which means that the B2 model removed
the noise and interference signals almost completely when the tar-
get speaker was silent. However, B2 considerably increased speech
over-suppression in TS1 and TS2 compared with B1. For exam-
ple, DEL and TSOS were increased by 3.62 percentage points and
2.09 seconds, respectively, in the T2 scenario. This shows the pre-
vious training scheme using PLCPA loss suffers from the trade-off
between the speech over-suppression and the interference leakage.

Model S1 trained with the proposed loss of L0.5
E yielded the

DEL and TSOS values that are close to the results of B1 for both
TS1 and TS2 while achieving almost the same ∆N value as B3 for
TS3. This means that excluding the ITS frames misclassified by the
pVAD model led to decreasing the interference leakage without in-
curring increases in speech over-suppression. While S1 modestly in-
creased the WER compared with B1, especially for the TS1 scenario
(31.89% → 34.67%), which might be due to increased processing
artifacts, the gain (46.52 dB→ 148.49 dB) in TS3 was much more
significant.

The effect of the threshold in LτE was examined by chang-
ing the τ value to 0.25 and 0.1 (see S2 and S3). By decreasing
τ , more frames would be considered as being misclassified and
would be excluded from the loss function. The results show that
decreasing the pVAD threshold value did not lead to further speech
over-suppression reduction. Instead of using hard pVAD decisions,
training the PNS model with soft decisions using LP loss resulted
in a similar performance for all metrics (S5) without threshold ad-
justment. Finally, using L0.5

M as the loss function further reduced
the speech over-suppression measured by TSOS at the slight ex-
pense of the interference leakage. All results show that the proposed
cross-task knowledge distillation training method based on pVAD
improved the PNS performance in both speech over-suppression and
leakage interference.

Table 2 shows the results of the PNS models obtained by com-
bining the asymmetric loss of (7) with PLCPA or the proposed loss.
As we can see in B1a, this improved the baseline system with re-
spect to the speech over-suppression at the cost of increased inter-
ference leakage in TS3. Adding the ITS training samples mitigated
interference leakage significantly while showing a reasonable per-
formance with respect to the speech over-suppression (B2a). The
proposed method, denoted as S4a, further reduced the interference
leakage amount while the TSOS results were mixed compared with
B2a (i.e., improvement was observed for TS2 while the TSOS was
degraded in TS1).

5. CONCLUSION

In this work, we introduced a new causal PSE model training method
to reduce interference leakage when the target speaker is inactive
without over-suppressing the target speech. We used a pVAD task
for cross-task knowledge distillation to achieve this goal. Specifi-
cally, we used misclassification patterns of a pVAD model to iden-
tify challenging frames of ITS training samples and excluded or de-
emphasized them from the PNS model loss calculation. The experi-
mental results showed the effectiveness of the proposed method.
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