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ABSTRACT

The Transformer-based models with the multi-head self-
attention mechanism are widely used in natural language
processing, and provide state-of-the-art results. While the
pre-trained language backbones are shown to implicitly cap-
ture certain linguistic knowledge, explicitly incorporating
structure-aware features can bring about further improvement
on the downstream tasks. However, such enhancement often
requires additional neural components and increases training
parameter size. In this work, we investigate the attention
head selection and manipulation strategy for feature injec-
tion from a network pruning perspective, and conduct a case
study on dialogue summarization. We first rank attention
heads in a Transformer-based summarizer with layer-wise
importance. We then select the underused heads through
extensive analysis, and inject structure-aware features by ma-
nipulating the selected heads. Experimental results show that
the importance-based head selection is effective for feature
injection, and dialogue summarization can be improved by
incorporating coreference information via head manipulation.

Index Terms— Dialogue Summarization, Transformers,
Attention Mechanism

1. INTRODUCTION

Recently, the Transformer-based models have shown state-
of-the-art performance across a variety of Natural Language
Processing (NLP) tasks, including, but not limited to, ma-
chine translation and reading comprehension [1]. One key
component of the Transformer architecture [2] is the layer
stacking of multi-head attention that allows the model to cap-
ture both local and global information to build feature-rich
contextualized representations. In large-scale pre-trained lan-
guage backbones, it is shown that attention heads at different
layers play different roles, and potentially capture grammati-
cal features such as part-of-speech [3] and structural informa-
tion like syntactic dependency [4]. However, without directly
training on corpora that provide explicit and specific linguis-
tic annotation such as coreference and discourse information,
model performance remains subpar for language generation
tasks that require high-level semantic reasoning [1]. Thus, in-
corporating such features in a more explicit way raises emerg-

ing research interest [5, 6], including adding attention con-
strain [7] and adopting separate graph neural components [5].

When fine-tuned on downstream tasks, previous studies
show that Transformer-based models are over-parameterized,
and can be compressed via structured pruning or knowledge
distillation. For instance, previous work showed that a few at-
tention heads do the “heavy lifting” whereas others contribute
very little or nothing at all [8]. In practice, in a well-trained
multi-layer Transformer, a large percentage of attention heads
can be masked at the inference stage without significantly af-
fecting performance, and some layers can even be reduced to
only one head [9]. Inspired by this observation, we rethink
the strategy of incorporating structure-aware information in a
network pruning perspective: redundant attention heads can
be replaced with featured weights, and it is much more com-
putationally efficient than introducing additional neural com-
ponents. In this paper, we conduct a case study on abstractive
dialogue summarization, where high-level semantic features
are necessary for achieving optimal performance. We investi-
gate the following two research questions:

• Are some attention heads less important or redundant
in a well-trained dialogue summarizer?

• Can we manipulate the underused heads with corefer-
ence information to improve the summarization model?

Experiments are conducted on a benchmark dialogue sum-
marization corpus SAMSum [10]. We first take a quantitative
observation on the importance of attention heads by scoring
and ranking them with a gradient-based algorithm, and con-
ducting structured head pruning at the fine-tuning and infer-
ence stage. We empirically find that masking a set of lowest-
ranking heads does not affect the model performance on the
downstream task, regardless of different training settings. We
then evaluate two head manipulation methods to incorporate
the coreference information into the neural dialogue summa-
rizer, and experimental results show that the model can obtain
improved performance, and the manipulated heads are effec-
tively utilized with higher importance.

2. TRANSFORMER-BASED MODELS

The Transformer [2] utilizes self-attention instead of recur-
rent or convolutional neural components. It can be in the
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form of encoder-only and encoder-decoder architectures, and
Transformer-based sequence-to-sequence models are popular
in various language generation tasks such as machine transla-
tion and summarization [11]. The encoder consists of stacked
Transformer layers, and in each of them, there are two sub-
components: a multi-head self-attention layer and a position-
wise feed-forward layer. Between these two sub-components,
residual connection and layer normalization are added. The
u-th encoding layer is formulated as:

h̃u = LayerNorm(hu−1 +MultiHeadAttn(hu−1)) (1)

hu = LayerNorm(h̃u + FFN(h̃u)) (2)

where hu is the input to u-th layer. MultiHeadAttn, FNN,
and LayerNorm are multi-head attention, feed-forward, and
layer normalization, respectively. The decoder consists of
stacked Transformer layers as well. In addition to the two sub-
components in encoder, the decoder performs another multi-
head attention over the previous decoding hidden states, and
over all encoded representations (i.e., cross-attention). Gener-
ally, the decoder generates tokens in an auto-regressive man-
ner from left to right.

One sophisticated design of the Transformer for a strong
representation learning capability is the multi-head attention
mechanism. More specifically, instead of performing a single
attention calculation on the input tuple (i.e., key, value, and
query) in a d-dimension, multi-head attention projects them
into Nh different sub-spaces (each sub-space is expected to
capture different features [2, 4]). After calculating attention
for every head, where produces a d/Nh-dimensional output,
we aggregate and project the vectors, and obtain the final con-
textualized representation. The multi-head attention of one
layer is formulated as:

Attention(Q,K, V ) = Softmax(
QKT√
d/Nh

)V (3)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (4)

MultiHeadAttn(Q,K, V ) = Concat(head1, ..., headNh) (5)

3. DIALOGUE SUMMARIZATION

Abstractive dialogue summarization has raised much research
interest in recent years [12, 13]. Unlike documents, conversa-
tions are interactions among multiple speakers, they are less
structured and are interspersed with more informal linguistic
usage [14, 15], making dialogue summarization more chal-
lenging. In common human-to-human conversations, the use-
ful information (which usually focuses on some dialogue top-
ics) is exchanged back and forth across multiple speakers (i.e.,
interlocutors) and dialogue turns. Aside from speakers refer-
ring to themselves and each other, they also mention third-
party persons, concepts, and objects, resulting in ubiquitous

Fig. 1. A dialogue example processed by coreference resolu-
tion. Colored spans are items in coreference clusters with ID
numbers. Each cluster is in one color for better readability.

Training Set
(14,732 Samples)

Mean/Std. of Dialogue Turns 11.7 (6.45)
Mean/Std. of Dialogue Length 124.5 (94.2)
Mean/Std. of Summary Length 23.44 (12.72)

Validation Set
(818 Samples)

Mean/Std. of Dialogue Turns 10.83 (6.37)
Mean/Std. of Dialogue Length 121.6 (94.6)
Mean/Std. of Summary Length 23.42 (12.71)

Test Set
(819 Samples)

Mean/Std. of Dialogue Turns 11.25 (6.35)
Mean/Std. of Dialogue Length 126.7 (95.7)
Mean/Std. of Summary Length 23.12 (12.20)

Table 1. Data statistics of the SAMSum corpus.

coreferential expressions [6]. Moreover, the implicit refer-
ring such as anaphora or cataphora makes coreference chains
more elusive to track. For instance, as the dialogue shown
in Figure 1, two speakers exchange information among inter-
active turns, where the pronoun “he” is used multiple times,
referring to the word “client”. Without sufficient modeling
of the referring information, a summarizer cannot link men-
tions with their antecedents, and produces outputs with fac-
tual inconsistency [16]. Therefore, enhancing the model with
coreference information is beneficial for dialogue summariza-
tion to more appropriately context comprehension, and pre-
cisely track the interactive flow throughout a conversation. In
this work, we conduct a case study on abstractive dialogue
summarization, and assess our proposed method of improving
context understanding by incorporating conference features.

4. EXPERIMENTAL SETTING

Corpus In our setting, we conduct experiments on the SAM-
Sum [10], a benchmark dialogue summarization dataset con-
sisting of 16,369 daily conversations with human-written
summaries. Dataset statistics are listed in Table 1.
Evaluation Metrics We quantitatively evaluated model out-
puts with the standard metric ROUGE [17], and reported
ROUGE-1, ROUGE-2, and ROUGE-L. All reported results
use the same evaluation criteria following previous works
[10, 13] for the benchmarked comparison.
Model Configuration The baselines and proposed models
were implemented in PyTorch and Hugging Face Transform-
ers. AdamW optimizer was used, and the initial learning rate
was set at 1e-5. Beam search size was 5. We trained each
model for 15 epochs and selected the best checkpoints on the
validation set with ROUGE-2 score. All experiments were
run on a single Tesla A100 GPU with 40GB memory.



Fig. 2. Head importance heatmaps of the BART-large model
trained with three different training configurations.

Fig. 3. Importance heatmap after averaging operation, and
heads with highest/lowest scores are selected in each layer.

5. HEAD IMPORTANCE FOR SPECIFIC
DOWNSTREAM TASKS

To assess the importance of attention heads in a Transformer-
based model, we rank the heads from a network pruning per-
spective. Here the structured pruning is adopted, which is
based on the hypothesis that there is redundancy in the at-
tention heads [8, 18]. To obtain importance scores, we fol-
low [9, 18] and calculate the expected sensitivity (gradient)
of the attention heads to the mask variable ξ(i,u) (i.e., {0, 1}):

MultiHeadAttn(Q,K, V ) = Concat(ξ1head1, .., ξNhheadNh)
(6)

S(i,u) = Ex∼X

∣∣∣∣ ∂L(x)∂ξ(i,u)

∣∣∣∣ (7)

where X is the data distribution and L(x) the loss on sam-
ple x. Intuitively, if S(i,u) has a high value then changing
ξ(i,u) is liable to have a large effect on the model (denotes the
contribution score for attention head i at layer u). After cal-
culating the contribution scores, we rank the attention heads
of each Transformer encoder layer after layer normalization,
and obtain those with the highest/lowest scores.

In our preliminary fine-tuning experiments, we observed
that there are some ranking variance. As shown in Figure 2,
the head importance heatmaps of a BART-large model [11]
upon different training configurations of random seeds and
learning rates are not exactly the same. We then use averaging
to exclude heads with high deviation. As shown in Figure 3,
some heads show consistently higher/lower layerwise impor-
tance scores; It indicates that the head importance has some
correlation with the downstream task and training corpus.

To evaluate the impact of pruning heads on the down-
stream task at the inference stage, we prune the heads of a
well-trained model on the summarization corpus, and com-

Model ROUGE-1 ROUGE-2 ROUGE-L

Baseline (BART-large) 53.14 28.58 49.69

Pruning Heads at Inference Stage
Highest-Ranking Heads 51.72 [↓2.7%] 27.10 [↓5.2%] 48.04 [↓3.4%]
Lowest-Ranking Heads 52.89 [↓0.5%] 27.88 [↓2.5%] 49.46 [↓0.5%]

Pruning Heads at Training Stage
Highest-Ranking Heads 52.70 [↓0.9%] 28.05 [↓1.9%] 49.14 [↓1.2%]
Lowest-Ranking Heads 53.16 [↑0.1%] 28.59 [↑0.1%] 49.73 [↑0.1%]

Table 2. ROUGE F1 scores on attention head pruning at train-
ing and inference stage. Relative changes are in brackets.

pare results on the test set. As shown in Table 2, masking
the highest-ranking heads of all Transformer layers leads to a
3.4% relative decrease on ROUGE-L, while masking lowest-
ranking heads only brings a 0.5% drop. To evaluate the im-
pact of pruning heads at the training stage, we mask the atten-
tion heads based on their importance during the fine-tuning
process. As shown in Table 2, the model can achieve a com-
parable result when we mask the highest-ranking heads of all
layers. In contrast, the evaluation performance upon mask-
ing lowest-ranking (underused) heads even becomes slightly
higher. We postulate that the model turns to exploit the rest
heads. Therefore, at both the training and inference stages,
the head importance is effective to indicate its contribution to
the task, and some heads provide limited contribution and can
be pruned before fine-tuning.

6. HEAD MANIPULATION FOR LINGUISTIC
FEATURE INJECTION

6.1. Constructing Structure-Aware Matrix

Given dialogue content after coreference resolution, to build
the chain of a coreference cluster, we add links between each
item and their mentions. Following previous works [6], to
better retain local information, we connect all adjacent items
in one cluster. More specifically, given a cluster Ci of m items
{Ei

1, E
i
2..., E

i
m}, we add a bi-directional link of each E to its

precedent. To construct a structure-aware matrix upon coref-
erence chains for enhancing the Transformer encoder, here we
investigate two methods:
Full-link Matrix Given a dialogue input x of n tokens (a sub-
word tokenization is utilized), a structure-aware coreference
matrix Ax is initialized in a n2 dimension. Iterating each
coreference cluster C, the first token ti of each item (e.g.,
word and text span) is connected with the first token tj of
its antecedent in the same cluster with a bi-directional edge
(i.e., Ax[i][j] = 1 and Ax[j][i] = 1). Then the weights are
re-scaled by averaging on the cluster size (m items).
Adjacent-link Matrix When the size of one cluster is big, its
averaged weights in a full-link matrix will be very small and
cause gradient vanishing. Therefore, following the feature ag-
gregation from neighbors in graph neural networks (GNNs),
we construct the adjacent-link matrix by only connecting each
item with its nearest neighbors.



Fig. 4. Architecture overview of the coreference-aware Trans-
former with attention head manipulation.

Model ROUGE-1 ROUGE-2 ROUGE-L

Baseline (BART-large) 53.14 28.58 49.69
MV-BART-Large 53.42 27.98 49.97
LM-Annotator (DAll) 53.70 28.79 50.81

Probing-based Head Selection
Full-link Matrix 53.80 28.58 50.25
Adjacent-link Matrix 53.58 28.83 50.12

Importance-based Head Selection
Full-link Matrix 53.68 28.71 50.03
Adjacent-link Matrix 53.98 29.15 50.73

Table 3. F1 ROUGE scores on the abstractive dialogue sum-
marization with attention head manipulation.

6.2. Attention Head Manipulation

After obtaining structure-aware matrices, we utilize them to
enhance the Transformer-based summarizer. Here we directly
manipulate attention heads with the featured weights, which
is a parameter-free method and more computationally effi-
cient than using additional neural components [5, 19]. It saves
10M parameters (3.1%) and 17% inference time than a GNN-
based model. As shown in Figure 4, in u-th layer, if one head
is lowest-ranking in the importance analysis, we modify it
with weights from Ax that present coreference information
(i.e., Importance-based Head Selection). In our setting, 6 of
the 12 BART encoding layers were processed for hierarchical
modeling, and we empirically found that manipulating heads
in higher layers performed better. Additionally, we compare
the proposed method to another one named Probing-based
Head Selection [6], where attention heads that are most sim-
ilar to the structure-aware matrix Ax (using cosine similarity
as measurement) are selected for feature injection (There are
no overlapped heads of these two selection strategies).

6.3. Results on Dialogue Summarization

Aside from the base model BART-large [11], we include two
recent state-of-the-art models: MV-BART-Large [20] and LM-
Annotator (DAll) [13] for extensive comparison. As shown
in Table 3, incorporating coreference information helps the

Model ROUGE-1 ROUGE-2 ROUGE-L

Inference Pruning of Probing-based Heads
Full-link Matrix 52.92 [↓1.7%] 28.01 [↓2.0%] 49.17 [↓2.2%]
Adjacent-link Matrix 52.75 [↓1.6%] 28.10 [↓2.5%] 49.35 [↓1.6%]

Inference Pruning of Importance-based Heads
Full-link Matrix 52.32 [↓2.5%] 27.41 [↓4.4%] 48.47 [↓3.1%]
Adjacent-link Matrix 52.44 [↓2.9%] 27.75 [↓4.9%] 48.60 [↓4.2%]

Table 4. Ablation study via head pruning at inference stage.

backbone BART-large, and makes it comparable to the state-
of-the-art models that use additional training data and neural
components. In particular, importance-based head selection
with adjacent-link matrix performed best with 1.6%, 2.0%,
and 2.1% relative F1 score improvement, which is better than
the full-link scheme, and the probing-based approach.

6.4. Importance Analysis of Manipulated Heads

To qualitatively assess the effectiveness of head manipulation,
we conduct an ablation study via head pruning. At the infer-
ence stage, we mask the heads that are injected with structure-
aware coreference features, and compare it with the unal-
tered model. As shown in Table 4, pruning the manipulated
heads leads to significant performance drop, and the model
is affected more by the importance-based than probing-based
strategy. Moreover, we compare the importance scores (see
Eq. 7) of before and after head manipulation in all encoder
layers, and observe that the previously underused heads weigh
much higher, demonstrating that the enhanced model effec-
tively utilize the injected features (see Figure 5).

Fig. 5. Head importance comparison of before and after the
feature injection. Axis X denotes the layer number. Axis Y
denotes the normalized importance score.

7. CONCLUSION

In this work, we revisited the attention head selection strat-
egy for feature injection from a network pruning perspective.
Head importance scoring and ranking of a Transformer-based
summarizer showed that some heads are underused after task-
specific training. We then manipulated such heads to incor-
porate structure-aware dialogue coreference features. Exper-
imental results showed that the importance-based head selec-
tion is effective for linguistic knowledge injection, and in-
corporating coreference information is beneficial for dialogue
summarization. As a general and computationally efficient
approach, this can also be extended to other Transformer-
based models and natural language tasks.
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