
CONTRASTIVE LEARNING-BASED AUDIO TO LYRICS ALIGNMENT FOR MULTIPLE
LANGUAGES

Simon Durand1*, Daniel Stoller1*, Sebastian Ewert1

1Spotify *Equal contribution

ABSTRACT

Lyrics alignment gained considerable attention in recent years. State-
of-the-art systems either re-use established speech recognition toolk-
its, or design end-to-end solutions involving a Connectionist Temporal
Classification (CTC) loss. However, both approaches suffer from
specific weaknesses: toolkits are known for their complexity, and
CTC systems use a loss designed for transcription which can limit
alignment accuracy. In this paper, we use instead a contrastive learn-
ing procedure that derives cross-modal embeddings linking the audio
and text domains. This way, we obtain a novel system that is simple
to train end-to-end, can make use of weakly annotated training data,
jointly learns a powerful text model, and is tailored to alignment. The
system is not only the first to yield an average absolute error below
0.2 seconds on the standard Jamendo dataset but it is also robust to
other languages, even when trained on English data only. Finally,
we release word-level alignments for the JamendoLyrics Multi-Lang
dataset.

Index Terms— lyric alignment, music information retrieval,
audio signal processing, speech recognition, open-source dataset

1. INTRODUCTION

For many years, the accuracy of systems for the automatic alignment
of audio and lyrics content was well below the requirements for
practical applications [1–5]. However, since 2019 there has been a
resurgence of research and results improved by an order of magnitude.
In this context, given an audio recording and textual lyrics for a piece
of music, the goal of automatic lyrics alignment is to identify for
each lyrical element the corresponding position in the audio. Hereby,
lyrical element can refer to paragraphs, lines, words, phonemes or
even characters, depending on the need for temporal precision.

Current systems typically either employ toolkits designed for
speech recognition or neural network-based end-to-end systems, both
with specific advantages and disadvantages. The former represent a
working recipe for many complex systems often centered around a
hidden Markov model (HMM) or transducer that transfers a lot of
past experience from speech recognition over to lyrics processing.
This can yield state of the art results [6] and tends to maximize the
usefulness of small datasets. However, using tightly integrated com-
ponents as well as task- and language-specific adaptations based on
expert knowledge [7–10] such as phoneme dictionaries and duration
models, such systems are often considered cumbersome to train and
to be limiting experimentation and further progress. Since the release
of larger scale noisy datasets [11,12] and methods to clean them [13],
many efforts [14, 15] have focused on building conceptually simpler
end-to-end systems that enable quick iteration and can make use of
larger amounts of data. Many of these systems are trained using the
Connectionist Temporal Classification (CTC) loss [16], which is a
specific instance of the forward-backward (FB) algorithm [17].

CTC-based training was first employed in [18] for lyrics align-
ment and was further explored in [19–21]. While CTC enables train-
ing neural networks from unaligned lyrics-audio pairs and thus from
larger datasets, there are several drawbacks to using CTC for align-
ment purposes. First, CTC acts as a transducer by introducing an ϵ
symbol (see [16] for details), which means ’no output’ for an audio
frame. It was originally used to enable HMM-less decoding of neural
network outputs for transcription, but can lead to ill-defined target
paths when used for alignment. Second, CTC assumes the text and
audio sequences match one-to-one except for temporal distortion and
thus it is not prepared for missing or extra symbols in the annotation -
a problem more severe for lyrics than speech due to the prominence
of unannotated instrumental sections and general annotation errors.
Third, CTC at training time is linear in the number of symbols it
supports, which means that in practice CTC systems only support
characters or phonemes but not (sub-)words - yet these could be
detected more robustly. As a consequence, CTC does not support
context-dependent phones while the surrounding context within a
word affects phonetic variability greatly.

Inspired by embedding-based approaches in neighbouring
fields [22–25], we present a novel end-to-end method that represents
the audio signal and the lyrics as sequences of embeddings and uses
contrastive learning to map them into a joint space without requiring
additional information. This way, we obtain a stable loss function
that does not require an ϵ symbol or a fixed in-memory state space,
allowing us to model characters in context with their neighbours,
which would otherwise lead to an infeasibly large vocabulary due to
combinatorial explosion. Due to this data-driven, neural text represen-
tation, our system is easy to extend to additional languages, and more
robust than modelling each character independently. We only require
an unordered bag of words occurring in an audio segment to train the
system, opposed to conventional methods that require an ordered,
complete word sequence or even symbol timings. It performs at the
level of the state-of-the-art, yielding an average absolute error below
0.2 seconds on the standard JamendoLyrics dataset [18] for the first
time. We also release manually annotated word-level alignments
for an extension of that dataset featuring three additional languages.
This enables a robust evaluation of multi-language lyrics alignment
approaches, whereas prior work in this setting [19, 26] relied on
performance estimates from noisy annotations [11], or required
duplicate songs.

In the following section 2, we will present the core elements of
our approach: the text and audio encoders, the similarity matching
and training procedure, and the line-based decoding. Section 3 shows,
via an evaluation on the extended JamendoLyrics Multi-Lang dataset,
the relative advantages of our main design choices, and how the
approach is both competitive with the state-of-the-art and can scale
well to additional Latin languages. Finally, we conclude and present
future directions in section 4.

ar
X

iv
:2

30
6.

07
74

4v
1

 [
cs

.S
D

]
 1

3
Ju

n
20

23

L V

Audio encoder

Lyrics
dataset

Text encoder

L V

A C

A CSample positive and negative tokens

0.3

0.1

0.1

0.1

0.4

0.2

0.1

0.1

Similarities

0.8

0.9

0.2

0.0

0.3

0.1

0.1

0.2

0.1

0.1

0.4

0.5

Token embeddings

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Audio
Audio embeddings

Lyrics
L O V E ␣ Y O U

Fig. 1. Our proposed approach training for an audio-lyrics pair. Positive
lyrics tokens are sampled from the lyrics, while negative ones are taken from
lyrics of other songs in the dataset. The audio and text encoders produce
embeddings for the audio and lyrics tokens, respectively. Finally, for each
lyrics token embedding, the maximum similarity to the audio embeddings is
maximised (positive examples) or minimized (negative examples).

2. SIMILARITY MODEL

An overview of our proposed similarity model and its training is given
in figure 1. In the following, we describe its audio and text encoder
components, the contrastive learning procedure for training, and the
alignment decoding.

2.1. Audio encoder

The first component of our similarity model is the audio encoder fa,
which aims to detect the phonetic content of the singing voice in
the audio. It receives features X ∈ RT×D that represent the audio
content with D-dim. feature vectors over time t ∈ {1, T}. In this
paper, we use spectrogram representations with 5 seconds duration,
magnitudes normalized by y → log(1+ y), a sampling rate of 11025
Hz, an FFT size of 512 and a hop size of 256. Other representations
are also possible, as long as their temporal resolution is high enough
for subsequent alignment. For the encoder itself, we use a residual
network with 10 residual convolutional blocks (RCBs). Each RCB
consists of 2 repetitions of the following sequence of operations:
group normalization [27], ReLU activation, and a 2D convolutional
layer with a (3x3) kernel and 64 features. The output of the above
is added to the input to the RCB. Finally, a 1D convolution layer is
applied on each time bin with E filters of kernel size D to eliminate
the frequency dimension and yield an embedding matrix A ∈ RT×E

with E = 64 as the embedding size. This output, with a purposely
small receptive field of 930 ms, is supposed to describe the local
phonetic content of the singing voice in the audio to enable matching
with the lyrics text.

2.2. Text encoder

With an estimate of how the singing voice could sound for any part
of the given lyrics text, we can match the text parts to the represen-
tation from the audio encoder. This estimation is performed by our

text encoder fℓ, which receives the lyrics text as a sequence of sym-
bols s1, . . . , sN , where the symbols could correspond to characters,
phonemes or other text representations. To process these symbols,
we pass them through a trainable embedding layer that maps each
symbol to a different embedding vector, resulting in an embedding
matrix L ∈ RN×E .

The resulting embeddings describe the likely phonetic con-
tent independently for each symbol. However, the pronunciation
of a symbol usually depends on the neighbouring symbols in
the text, especially when using characters as symbols. There-
fore, we extend the text encoder to process the subsequence
(sn−C , sn−C+1, . . . , sn, . . . , sn+C) for each symbol sn, n ∈
{1, . . . , N}, containing the C previous and following symbols
as context information. A special padding symbol is used for sn with
n < 1 or n > N to ensure an equal length of each subsequence.

In case we know the language of the input song1, the text encoder
could exploit this information to better estimate the pronunciation. In
this language-conditioned setting, we create a trainable embedding for
each language and append it to each text subsequence. In this paper,
we use a simple network with one fully connected layer (three in case
of language conditioning) with ReLU activation, and a linear output
layer to yield an E-dim. embedding for each symbol – although more
complex architectures can be used for further improvements. Both
the text and audio encoder embeddings are L2 normalized to enable
cosine similarity comparisons.

2.3. Similarity matching and training

The audio and text encoders project the audio and lyrics into a shared
embedding space. We aim to train the model such that these simi-
larities are high for matching audio and text parts and low for non-
matching ones. If we knew the exact position of each symbol in the
audio, this could simply be achieved by training a classifier where
the correct symbol for each position in the audio has to be identified,
and each class is equal to one (unique) symbol from the current lyrics
sequence. However, such strong labels are difficult to obtain with
sufficient accuracy, so we consider the case where we only know the
start and end of the lyrical lines in the audio.

In this weak label case, we cannot apply such a simple classi-
fication objective. We also do not want to use an auto-regressive
sequence-to-sequence model objective [29], as it incentivizes a strong
language model, which we found in our early experiments to be
detrimental to alignment if it inhibits the acoustic model. Instead,
we apply contrastive learning, where a positive example s+ is taken
from the lyrics for a given audio segment and negative examples s−

are sampled from the distribution ps over symbols obtained from
all lyrics in the dataset that do not2 appear in the audio segment.
To estimate whether a symbol s appears somewhere in the audio,
we take its maximum similarity over the whole audio features X,
m(X, s) = maxt fℓ(s) · fa(X)Tt , and apply the training objective:

L = E(X,s+)∼pd

[
(m(X, s+)− 1)2 + Es−∼psm(X, s−)2

]
(1)

where pd is the distribution over audio examples and symbols sampled
from the corresponding lyrics sequence. The loss drives the maximum
similarity between positive audio-symbol pairs up to 1. Negative
pairs are pushed towards 0 to make such audio and text embeddings
orthogonal.

1As lyrics are part of the input, this is a reasonable assumption. For
instance, there is 100% accuracy on JamendoLyrics Multi-Lang using [28].

2If unannotated symbols are present in the audio and mistakenly used as
negatives, our method still works as the majority of examples are correct.

2.4. Decoding

After training the model on pairs of audio and text fragments, we
perform the alignment by computing a normalised similarity ma-
trix between audio and text sequences: S = 1

2
(A · LT + 1), with

S ∈ [0, 1]T×N . We then decode an alignment from S by finding a
monotonic path maximizing the cumulative similarity score.

With the above decoding, we found our model to mistakenly
position the last few words of a lyrical line close to the start of the
next one (and similarly, the first few words of a lyrical line at the
end of the previous one). To alleviate this problem, we exploit that
lyrics are temporally clustered and constrain the model to output
all words from the same line close to each other. From the initial
alignment obtained with S, we estimate each line interval as starting
at ts = tc − td−d

2
and ending at te = tc +

td+d
2

. Here, tc represents
the center time of the line by taking the estimated start time of its
middle token, which we found to be robust to outliers. td is the
duration of the lyrical line, estimated by multiplying the number of
tokens in the line with an estimated duration d per token (which we
empirically set to 0.2s for characters and 0.4s for phonemes but could
be made token- and song-dependent to improve performance).

Using that estimated line position, we define a line-mask M ∈
[0, 1]T×N for S, with each column of M constructed as shown in
figure 2 and constraining each token to be aligned around its estimated
line position. Note that M does not require any additional training
or external system, as opposed to using an external vocal activity [9]
or boundary [21] detection module, and is really fast to obtain. The
final alignment is produced by applying the initial decoding scheme
again, but this time to the masked similarity matrix S ◦M, with ◦
as the Hadamard product. As a result, high values within the line, as
seen in figure 2, encourage the model to position all the tokens of a
line within the initially estimated line interval (ts, te). To account for
errors in the initial estimation, a linear tolerance window around the
line borders is used. We empirically set the length of this window to
2.5s, but find performance to be quite robust to this parameter.

3. EXPERIMENTS
3.1. Methodology

We use two standard evaluation metrics, the average absolute error
(AAE) in seconds and the percentage of correct onsets according
to a tolerance window of 0.3 seconds (PCO), due to their comple-
mentary nature: the AAE, where smaller is better, is sensitive to
both very small and especially very large positioning errors, whereas
PCO, where higher is better, encourages predicting timestamps that
are acceptably close to the ground truth while treating all types of
errors the same. For training, we use a dataset of professional-quality
recordings featuring English, Spanish, German and French songs.
Our models are trained for at most 100 epochs with 20,000 iterations
each, using an ADAM optimizer with learning rate 0.001. An epoch
contains approximately 400 hours of data, sampled among a collec-
tion of 87,785 songs. We reserve 2% of our data for validation and
compute the loss after each epoch for early stopping with a patience
of 20 epochs. Our model has 1.2 Million parameters for a modest
total size of 4.8MB. All our phoneme experiments are based on the
CMU English pronunciation dictionary3. For each example, and
we use all symbols as positive samples together with 1000 negative
samples.

We use the openly available JamendoLyrics Multi-Lang data-
set [30] for evaluation, that features Creative Commons songs and is
an extension of the JamendoLyrics dataset [18] to German, French,

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

h e r e y o u a r e

Line center position
(median)

Character duration

Line deviation

time (s)
0

1

Line deviation

Fig. 2. Constructing one row of the line-mask M for the lyrical line “Here you
are” (red line), used during line-based decoding. Dashed arrows correspond to
the character’s start time estimated in the first decoding. The initial estimates
for “h” in “here” and “re” in “are” are moved close to the other characters in
the line by the line-based decoding.

and Spanish (60 additional songs with a high genre diversity) on top
of the existing English data. We extend this dataset with manually an-
notated word-level timings for all songs. We do not evaluate on other
commonly used datasets as they are smaller, only support English
recordings and might overlap with our training set.

3.2. Results and discussion

We start by evaluating different configurations of our system, to
assess the impact of the loss, contextual embeddings, the choice of
text representation, and the use of line-based decoding. We then
compare our approach with the current state-of-the-art and conclude
by investigating the multilingual performance.

How does CTC compare to our contrastive learning approach?
To evaluate against a CTC approach, we build a CTC-based model
using the audio encoder from our similarity model, leaving the data
and experimental setup unchanged. We add a fully connected layer
to the audio encoder output to get phonemes probabilities, and use
the CTC loss during training. As shown in Table 1 (model M1),
the performance is similar to the CTC approach from [18] shown in
Table 2. However, its AAE is significantly worse than our baseline
similarity model (M3) using the same, phoneme-based configuration.
Our proposed text encoder together with contrastive learning then
appears to yield better performance than a simple CTC approach.

In the above comparison (between models M1 and M3), no ad-
ditional prior knowledge is used to constrain the models for further
performance improvements. However, high-performance CTC sys-
tems [19, 21] are indeed incorporating additional information by
adding vocal separation, pitch information or external boundary es-
timation. Similarly, we also obtain a competitive AAE for the CTC
approach (M2) when swapping the mask M used for line-based de-
coding with the one obtained from our best similarity model. This
suggests CTC approaches rely heavily on such additional constraints,
whereas our model is more robust while being comparatively simple.

What is the impact of a contextual text representation? We can
compare similarity models processing multiple symbols with the text
encoder (models M5 and M6) and those processing a single sym-
bol without additional context (models M3 and M4) in Table 1. We
see that processing multiple (M5) rather than single (M3) phonemes
leads to significantly stronger results4. This effect is even stronger
for characters, where processing characters independently (M4) leads
to poor performance, and using multiple characters (M6) yields an
AAE of 0.15s, the lowest reported in the literature so far. The above
results show the benefits of modeling a symbol based on contex-
tual information influencing its pronunciation. We hypothesize this
contextual information also leads to less spurious activations by non-
vocal sounds. For instance, individual symbols are more easily mis-
taken with an instrumental section than sequences of symbols. It may

4We use small values for C as long-range text dependencies are not crucial
for determining the sound of each symbol.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Model Loss Token C LB-Dec. AAE PCO

M1 CTC Phon 0 ✓ 0.90 86
M2 CTC Phon 0 ✓* 0.20 89
M3 Sim Phon 0 ✓ 0.39 89
M4 Sim Char 0 ✓ 1.60 73
M5 Sim Phon 1 ✓ 0.16 93
M6 Sim Char 1 ✓ 0.15 92
M7 Sim Char 1 ✗ 0.24 91

* Uses mask matrix M from the best similarity model

Table 1. Different model configurations trained on English data only and
evaluated on the JamendoLyrics English dataset, using the CTC or similarity
(“Sim”) model, a character (“Char”) or phoneme (“Phon”) representation, and
C context symbols as described in section 2.2. “LB-Dec.” refers to line-based
decoding from section 2.4.

System Dependencies* AAE (s) PCO (%)

SDE [18] None 0.82 85
VHMRA [19] SS 0.37 92
DAD [9] Tr, Pho 0.31 93
HBE [21] SS, Pitch, Pho, Boun 0.23 94
GYL [6] Gen, Pro, Mult, LM, Pho 0.22 94
M5 Pho 0.16 93
M6 None 0.15 92

* SS: Source separation. Pho: Grapheme-to-phoneme model. Pitch, Gen:
Uses pitch or genre information during training. Tr: Transcription model. B:
Boundary model. M: Multiple alignment models. Pro: Pronunciation model.
LM: Language model.

Table 2. Comparison with published methods on the JamendoLyrics English
dataset, and their dependencies. We see that previously, more dependencies
increased performance, at the cost of additional complexity.

also make negative sampling more discriminative. These contextual
text embeddings cannot be used with CTC approaches because of
a combinatorial explosion when considering all possible sequences
of symbols as individual classes, and because of the limited support
for text modeling. This might be one reason why recent CTC-based
works use external information to yield a reduced search space and
work well. Unlike standard toolkits that can use triphone states, we do
not have to deal with a large increase in vocabulary size. Furthermore,
our approach learns from the data directly so we do not have to manu-
ally model context-dependant text pronounciation with heuristics that
are hard to scale to different languages and music styles.

Is a phoneme representation mandatory? If the text encoder does
not process symbols with context, we see that a phoneme representa-
tion (model M3) is important to get a good performance, compared
to using a character representation (model M4), as indicated by prior
research [6, 9, 19, 21]. However, when the text encoder processes
characters with context, then a phoneme representation (model M5)
performs similarly as a character representation (model M6). We hy-
pothesize that contextual character representations could be thought
as a form of data-driven and end-to-end phoneme representation.

What is the effect of a line-based decoding? When we skip the
line-based decoding (M7) of the best character model, we observe
a significantly worse AAE. It can indicate that the mask M indeed
helps removing outliers. We note that all configurations worked better
using this simple decoding process.

How do similarity models compare to the state-of-the-art? We
compare our results with several published models in Table 2. We see
both the phoneme and character similarity models surpass the state-
of-the-art for the AAE metric, and stay close to the state-of-the-art for

All EN ES DE FR

Model Data AAE PCO AAE AAE AAE AAE

M5 EN 1.11 59 0.16 1.72 1.22 1.36
GYL [6] EN 0.65 73 0.22 0.97 0.62 0.78
M6 EN 0.35 89 0.15 0.37 0.41 0.47
M6 All 0.29 91 0.39 0.22 0.26 0.28
M6 Lang-Cond. All 0.18 94 0.21 0.13 0.16 0.19

Table 3. Evaluation of different systems on the JamendoLyrics Multi-Lang
dataset, training on English data only (“EN”) or on English, Spanish, German,
and French (“All”).

the PCO metric, while requiring at the same time less dependencies.
How do similarity models perform on multilingual data? To

estimate the multilingual performance of published models trained
on English data, we apply the NUS AutoLyricsAlign software5 on
the JamendoLyrics Multi-Lang dataset, and evaluate the alignment6.
We find that the performance on English matches what was published
by the authors [6]. In Table 3, we compare this phoneme model
against our phoneme (M5) and character (M6) variants, also trained
on English data only. We see the phoneme models don’t retain their
strong English performance on other languages while the character-
based variant manages to maintain relatively high performance on
non-English data, with an AAE almost halved compared to [6]. This
highlights the risk of error propagation of phoneme models if we try
to extend the scope to additional languages, and that the performance
is limited by the performance of the external phoneme representation.

As expected, including non-English training data (for model M6)
increases performance on the non-English subsets, but its perfor-
mance on English decreases. Importantly, adding a language condi-
tioning layer to M6 (last row of Table 3), as described in section 2.2,
enables a strong performance on all languages while remaining com-
petitive with the current state-of-the-art on English data – indicat-
ing we successfully leverage knowledge of lyrics language without
language-specific modelling effort. The model sets a new benchmark
for multilingual lyrics alignment.

4. CONCLUSION
In this paper, we presented a novel lightweight system tailored to
lyrics alignment featuring an audio and text encoder, and trained
using contrastive learning on weakly labelled data. The alignment
is performed on a similarity matrix of text and audio embeddings,
and the proposed approach reaches the state-of-the-art on English.
We show that processing lyrics characters with a context window in
an end-to-end fashion is key to reach the accuracy of a handcrafted
phoneme representation, and to generalise to unseen languages. With
the addition of a simple and easily usable language-conditioning,
we obtain strong performance across all languages. We share word-
level alignments for the JamendoLyrics Multi-Lang dataset that re-
searchers can extend to a more diverse set of languages, and use
to evaluate multi-lingual alignment systems rigorously. We believe
our embedding-based, data-driven approach is key to address low-
resource languages by means of transfer and few-shot learning, as
the same model architecture can be reused across languages. As our
contrastive learning approach can be trained on audio where the lyrics
overlap in time (e.g. duets, Ad-Lib) since it does not need information
about word order, it would be interesting to explore this direction and
adapt the decoding stage to enable new types of alignment.

5https://github.com/chitralekha18/AutoLyrixAlign
6While there exists a multi-language model [19], we could not find a way

to apply it to this dataset, and we want to avoid evaluation on a dataset with
overlapping train and test data and potentially inaccurate annotations.

https://github.com/chitralekha18/AutoLyrixAlign

5. REFERENCES

[1] Annamaria Mesaros and Tuomas Virtanen, “Automatic align-
ment of music audio and lyrics,” in International Conference
on Digital Audio Effects (DAFx), 2008.

[2] Hiromasa Fujihara, Masataka Goto, Jun Ogata, Kazunori Ko-
matani, Tetsuya Ogata, and Hiroshi G Okuno, “Automatic
synchronization between lyrics and music cd recordings based
on viterbi alignment of segregated vocal signals,” in Interna-
tional Symposium on Multimedia (ISM), 2006.

[3] Anna Marie Kruspe, Application of automatic speech recogni-
tion technologies to singing, Ph.D. thesis, TU Ilmenau, 2018.

[4] Ye Wang, Min-Yen Kan, Tin Lay Nwe, Arun Shenoy, and
Jun Yin, “LyricAlly: automatic synchronization of acoustic
musical signals and textual lyrics,” in International conference
on Multimedia (ACMMM), 2004.

[5] Sungkyun Chang and Kyogu Lee, “Lyrics-to-audio alignment
by unsupervised discovery of repetitive patterns in vowel acous-
tics,” IEEE Access, vol. 5, pp. 16635–16648, 2017.

[6] Chitralekha Gupta, Emre Yılmaz, and Haizhou Li, “Auto-
matic lyrics alignment and transcription in polyphonic music:
Does background music help?,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020.

[7] Chitralekha Gupta, Emre Yılmaz, and Haizhou Li, “Acoustic
modeling for automatic lyrics-to-audio alignment,” in Inter-
speech, 2019.

[8] Georgi Bogomilov Dzhambazov and Xavier Serra, “Modeling
of phoneme durations for alignment between polyphonic audio
and lyrics,” in Sound and Music Computing Conference (SMC),
2015.

[9] Emir Demirel, Sven Ahlbäck, and Simon Dixon, “Low resource
audio-to-lyrics alignment from polyphonic music recordings,”
in International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021.

[10] Bidisha Sharma, Chitralekha Gupta, Haizhou Li, and Ye Wang,
“Automatic lyrics-to-audio alignment on polyphonic music using
singing-adapted acoustic models,” in International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019.

[11] Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and Geoffroy
Peeters, “DALI: A large dataset of synchronized audio, lyrics
and notes, automatically created using teacher-student machine
learning paradigm,” in International Society for Music Informa-
tion Retrieval (ISMIR), 2018.

[12] Jeffrey C Smith, Correlation analyses of encoded music perfor-
mance, Ph.D. thesis, Stanford University, 2013.

[13] Gabriel Meseguer-Brocal, Rachel Bittner, Simon Durand, and
Brian Brost, “Data cleansing with contrastive learning for vocal
note event annotations,” in International Society for Music
Information Retrieval (ISMIR), 2020.

[14] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi,
Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta Soplin, Jahn
Heymann, Matthew Wiesner, Nanxin Chen, Adithya Renduch-
intala, and Tsubasa Ochiai, “ESPnet: End-to-end speech pro-
cessing toolkit,” in Interspeech, 2018.

[15] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar,
Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang,
Yonghui Wu, et al., “Conformer: Convolution-augmented trans-
former for speech recognition,” in Interspeech, 2020.

[16] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks,” in
International Conference on Machine learning (ICML), 2006.

[17] Lawrence R Rabiner, “A tutorial on hidden markov models and
selected applications in speech recognition,” Proceedings of the
IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[18] Daniel Stoller, Simon Durand, and Sebastian Ewert, “End-to-
end lyrics alignment for polyphonic music using an audio-to-
character recognition model,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2019.

[19] Andrea Vaglio, Romain Hennequin, Manuel Moussallam, Gaël
Richard, and Florence d’Alché Buc, “Multilingual lyrics-to-
audio alignment,” in International Society for Music Informa-
tion Retrieval Conference (ISMIR), 2020.

[20] Yann Teytaut and Axel Roebel, “Phoneme-to-audio alignment
with recurrent neural networks for speaking and singing voice,”
in Interspeech, 2021.

[21] Jiawen Huang, Emmanouil Benetos, and Sebastian Ewert, “Im-
proving lyrics alignment through joint pitch detection,” in
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2022.

[22] Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, and
Juan Pablo Bello, “Wav2clip: Learning robust audio repre-
sentations from clip,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022.

[23] Liliane Momeni, Triantafyllos Afouras, Themos Stafylakis,
Samuel Albanie, and Andrew Zisserman, “Seeing wake words:
Audio-visual keyword spotting,” in British Machine Vision
Virtual Conference (BMVC), 2020.

[24] Kilian Schulze-Forster, Clement SJ Doire, Gaël Richard, and
Roland Badeau, “Phoneme level lyrics alignment and text-
informed singing voice separation,” Transactions on Audio,
Speech, and Language Processing (TASLP), vol. 29, pp. 2382–
2395, 2021.

[25] Niluthpol Chowdhury Mithun, Sujoy Paul, and Amit K Roy-
Chowdhury, “Weakly supervised video moment retrieval from
text queries,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[26] Charles Brazier and Gerhard Widmer, “On-line audio-to-lyrics
alignment based on a reference performance,” in International
Society for Music Information Retrieval (ISMIR), 2021.

[27] Yuxin Wu and Kaiming He, “Group normalization,” in Euro-
pean conference on computer vision (ECCV), 2018.

[28] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov, “Bag of tricks for efficient text classification,” arXiv
preprint arXiv:1607.01759, 2016.

[29] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton,
“Speech recognition with deep recurrent neural networks,” in
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013.

[30] Emir Demirel, Daniel Stoller, and Simon Durand, “Ja-
mendoLyrics Multi-Lang – an evaluation dataset for multi-
language lyrics research,” https://github.com/f90/
jamendolyrics/.

https://github.com/f90/jamendolyrics/
https://github.com/f90/jamendolyrics/

	 Introduction
	 Similarity model
	 Audio encoder
	 Text encoder
	 Similarity matching and training
	 Decoding

	 Experiments
	 Methodology
	 Results and discussion

	 Conclusion
	 References

