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ABSTRACT

To let the state-of-the-art end-to-end ASR model enjoy data effi-
ciency, as well as much more unpaired text data by multi-modal
training, one needs to address two problems: 1) the synchronicity
of feature sampling rates between speech and language (aka text
data); 2) the homogeneity of the learned representations from two
encoders. In this paper we propose to employ a novel bidirec-
tional attention mechanism (BiAM) to jointly learn both ASR en-
coder (bottom layers) and text encoder with a multi-modal learning
method. The BiAM is to facilitate feature sampling rate exchange,
realizing the quality of the transformed features for the one kind to
be measured in another space, with diversified objective functions.
As a result, the speech representations are enriched with more lin-
guistic information, while the representations generated by the text
encoder are more similar to corresponding speech ones, and there-
fore the shared ASR models are more amenable for unpaired text
data pretraining. To validate the efficacy of the proposed method,
we perform two categories of experiments with or without extra un-
paired text data. Experimental results on Librispeech corpus show
it can achieve up to 6.15% word error rate reduction (WERR) with
only paired data learning, while 9.23% WERR when more unpaired
text data is employed1.

Index Terms— Speech recognition, end-to-end, bidirectional
attention, forced alignment, multi-modal, representation

1. INTRODUCTION

End-to-end (E2E) automatic speech recognition (ASR) frame-
work [1–5] has now come into predominance in both research
and product areas [6–8] thanks to its efficacy in modeling capacity,
as well as compactness. However, one of the limitations of E2E
ASR modeling is its insatiable data-hungry [9]. To train a decent
ASR system, the rule of thumb is always the more data the better.

To get more data, one would first consider collecting more
human-transcribed data, the so-called paired data. Unfortunately,
such data comes with high costs. As a result, ASR models are usu-
ally trained with limited paired data. The alternative is to get more
unpaired data at a lower cost instead, in terms of either unpaired
speech data or unpaired text data accordingly. For unpaired speech
data exploitation, one can employ unsupervised pretraining [10–13]
or self-training [14–18] to yield improved ASR performance, while
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author.

1Source code: https://github.com/yuhangear/Multi-modal-learning.git

to take advantage of unpaired text data, people have many options
for obtaining better ASR models.

In order to well exploit text data, one of the simplest ways is to
employ text data to train an external language model (LM) [19, 20]
that is fused with ASR system, yielding improved results. Besides,
given a unpaired text data set, people can employ a text-to-speech
(TTS) system to generate synthesized paired speech-text data [21–
23]. However, the challenge is to obtain an off-the-shelf TTS system
yielding diversified speech data is a nontrivial task.

More recently, multi-modal training has been widely explored
to realize training an ASR model with both speech and text (either
paired or unpaired) data simultaneously [24–26]. The difficulties
here lie in two aspects: 1) The synchronicity of feature sampling
rates between speech and text/language, namely, speech sampling
rate is much faster than language ones, and hence how to synchro-
nize them is a problem, denoted as AliProblem-1 for brevity; 2) The
homogeneity of the learned representations from two encoders, that
is, since the ASR encoder hidden representations have different dis-
tributions with those obtained from the text encoder, how to make
the two representations similar is also a problem, and it is denoted
as AliProblom-2.

For the above-mentioned multi-modal training, [25] employs a
conventional HMM-DNN model to obtain phone level alignment for
the transcript of the paired data, and the duration estimation model
is used for the unpaired text data to solve AliProblem-1. To ad-
dress the AliProblom-2, one can introduce diverse objective loss
functions, such as masked LM (MLM), connectionist temporal clas-
sification (CTC), as well as cosine distance loss functions, etc., to
make the two learned representations closer to each other.

In this paper, we propose a novel speech-text based multi-modal
training approach to boost ASR performance, using a modified bidi-
rectional attention mechanism (BiAM) [27] that facilitates the solu-
tion of both AliProblom-1 and AliProblom-2 with a joint training
manner. The framework of the proposed method is illustrated in Fig-
ure 1. By BiAM, we can mutually transform one kind of represen-
tation (aka embedding) into another representational space. Specif-
ically, we can transform language representation (aka text embed-
ding) into speech space, as well as transform speech representation
(aka speech embedding) into language representational space. By
such a transformation, we can solve the AliProblom-1. Meanwhile,
we employ a series of loss functions, such as CTC loss, cosine dis-
tance losses, as well as MLM loss, to make the two transformed
features closer, hence addressing the AliProblom-2. Concretely,
once we employ the BiAM to transform the text embedding into
speech space, cosine distance loss is employed to address the two
feature similarity issues, the text encoder is learned to generate em-
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Fig. 1. Speech-text based multi-modal learning framework with
Bidirectional attention mechanism (BiAM). After training, all the
stuff in the dashed-line box will be removed.

beddings more appropriate for the speech encoder. Conversely, the
transformed speech embedding into language representational space
is measured with CTC and MLM losses, respectively, such that the
bottom layer of the ASR encoder is learned to extract embeddings
enriched with linguistic information.

Our contributions can be summarized as follows: 1) To the best
of our knowledge, we are the first to employ the bidirectional atten-
tion mechanism for speech-text-based multi-modal training to boost
ASR performance. 2) To train text encoder, we advocate grapheme
instead of phoneme sequence to learn text encoder, which makes the
proposed method language agnostic. 3) We demonstrate its efficacy
on Librispeech data with diverse configurations.

2. RELATION TO PRIOR WORK

Speech-text based multi-modal training for end-to-end ASR has be-
come popular for a while [24–26, 28–32]. [24] directly merge the
two embeddings generated from both encoders to train the shared
ASR encoders. To solve both problems as mentioned, [29] proposed
to use the embeddings from text encoder as query while speech em-
beddings from ASR encoder as value to perform attention as a kind
of speech-text alignment. [30] apply a CIF framework [33] to gen-
erate phoneme-level embeddings from speech embedding, realizing
text-speech alignment. [26] proposed to employ RNNT-T to gener-
ate alignments between the text and speech encoder output. [25] pro-
posed to use HMM-TDNN aligned phone sequence as the input to
train a text encoder from which the output embedding is generated.
Besides, [25] also employed CTC loss to make both embeddings
similar.

3. METHODOLOGY

3.1. Multi-modal learning framework

The whole framework is illustrated in Figure 1, which is composed
of three modalities, one is Conformer-based [4] ASR model, and
the second is text encoder using Transformer, while the third is the
modified bidirectional attention module [27], namely BiAM, which
accepts both speech and text encoder embeddings as the inputs.

The entire network is trained with two category losses, one is
the ASR loss function, and the others are loss functions denoted
as LALI facilitating the alignment optimization between two embed-
dings with BiAM. For clarity, the overall losses are expressed as
follows:

Lmulti-modal = LASR + αLALI (1)
LASR = λLCTC + (1− λ)LAttention (2)
LALI = Lcd(Yaligned,X) + LMLM(Xaligned,Ygrapheme)

+ LgCTC(Sampler(X,Yaligned),Ygrapheme) (3)

where Ygrapheme ∈ Rn2 is the grapheme sequence generated from
the input text data, and n2 is the sequence length in grapheme. Cor-
respondingly, we denote the speech embedding length as n1 in the
following. Besides, we fix α = 0.1, and λ = 0.3 in the following
experiments.

Similarly in Equation 3, both X ∈ Rn1×d and Y ∈ Rn2×d

are embedding sequences of the ASR and text encoders respec-
tively2, while Xaligned = BiAM(X), and Yaligned = BiAM(Y) with
Xaligned ∈ Rn2×d, Yaligned ∈ Rn1×d, and again n1 and n2 being
speech and grapheme embedding length respectively. One can refer
to Section 3.2 for the details of the explanation of the BiAM.

Besides, in Equation 3, “cd” stands for cosine distance, and
gCTC stands for grapheme CTC. For gCTC training, we employ a
“Sampler” to sample both Xaligned and Y′ for each mini-batch train-
ing. As mentioned, the MLM in Equation 3 refers to masked LM.

We note that the speech embeddings are from the bottom 8th
layer of the Conformer in practice, while the grapheme embeddings
are output from the final layer of the text encoder instead. Finally,
after training, only the ASR modality serves for recognition in Fig-
ure 1.

3.2. Bidirectional attention mechanism

To solve the alignment problem between the length of the paired
speech and text embeddings (AliProblom-1 here), [27] recently pro-
posed a bidirectional attention mechanism (BiAM) realizing a neural
forced-alignment (NeuFA) method. Inspired by [27], we propose a
simpler one for the speech-text multi-modal training. Specifically,
we make K1 = V1 and K2 = V2, as well as the compatibility func-
tion being defined as matrix dot product in [27]. In other words, we
do not generate key-value pairs, and we directly use text and speech
embeddings for dot product operation to generate the shared atten-
tion matrix instead. Consequently, the BiAM is implemented as fol-
lows. Rewrite speech embedding sequence X ∈ Rn1×d as Xn1×d

for notational clarity. Likewise, the corresponding text embedding
sequence Y ∈ Rn2×d is rewritten as Yn2×d, and n1 6=n2. To begin
with the bidirectional attention transformation, we first obtain the
shared attention matrix A as:

A = Xn1×d ×Yd×n2 (4)

where A ∈ Rn1×n2 . Then we perform the softmax operation on A
and AT to obtain:

W12,W21 = softmax(A,AT ) (5)

2For simplicity, we ensure the dimension of speech and text embeddings
are equal to d.
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Fig. 2. The diagram of bidirectional attention mechanism (BiAM),
where Xn1×d and Yn2×d are speech and text embedding sequences
respectively.

where W12 ∈ Rn1×n2 , and W21 ∈ Rn2×n1 . Now, we can obtain
two outputs as aligned embedding with the following transforma-
tion:

Xn2×d
aligned = W21 ×Xn1×d (6)

Yn1×d
aligned = W12 ×Yn2×d (7)

where Xn2×d
aligned and Yn1×d

aligned are the two final outputs by the BiAM.
From Equations 6 and 7, BiAM realizes two transformations W12

and W21. The latter transforms the speech embeddings, yielding
the “aligned” speech sequence with the same length as the grapheme
embedding length n2. Likewise, the former do the opposite opera-
tion, with the “aligned” text sequence having the same length as the
corresponding speech n1. Consequently, they are comparable with
diverse loss functions, such as Lcd, LMLM, and LgCTC ,etc. in Equa-
tion 3.

The key point of the BiAM lies in the so-called compatibility
function definition in [27]. Here, it is defined as two embedding
sequence dot product computation as Equation 4, which actually is
the pair-wise dot product distance between the two embedding se-
quences. Once the matrices A and AT are transformed to posterior
matrix using softmax operation, they can act as attention mechanism
on the input embeddings, yielding a kind of forced alignment. The
details of the BiAM computation are illustrated in Figure 2.

3.3. Training process

The whole network in Figure 1 is trained using Equation 1 as The
loss function. In practice, we first train the network with paired
speech-text data, and both the ASR model and text encoder are
jointly trained. During this stage, the cosine distance loss Lcd in
Equation 3 is only employed at later training steps for the sake of
stable training.

Once the training with the paired speech-text data is finished,
the embeddings generated with the bottom layer of the ASR en-
coder have been enriched with more linguistic information that are
not only speaker but also ambiance independent, such that it leads
to improved ASR performance. Optionally, after the paired speech-
text data training done, we can employ unpaired text data to continue

to train the network, where the embeddings of the text encoder are
taken as input to the 8th layer of the ASR encoder. This is possible
because our text encoder is also taught how to generate grapheme
embeddings that are closer to the speech ones with the corresponding
losses in Equation 3. After the unpaired text data training, we should
fine-tune the network using the paired speech-text data again. How-
ever, for the unpaired training, since we cannot perform the BiAM-
based training, and the output from the text encoder has no duration
information, we just randomly replicate each grapheme embedding
twice so far.

4. EXPERIMENTS

4.1. Data

All of the experiments are conducted on the LibriSpeech [34] cor-
pus. Train data consists of 100 hours of train clean data, as well as
960 hours of full train data. Test sets consist of 4 data sets, namely,
dev-clean, dev-other, test-clean, and test-other.
Overall we conduct two kinds of experiments. One is using 100
hours of train clean data, with or without 960 hours of transcript as
unpaired text data. The other experiments are performed on the full
960 hours of train data.

4.2. Modeling

All experiments are conducted with Espnet toolkit [35]. The ASR
model is Conformer with 12-layer encoder and 6-layer Transformer-
based decoder. We use a smaller ASR model for 100-hour clean
train data, while a bigger one for the 960-hour full training data. The
differences lie in the middle layer, attention and word embedding
dimensions, as well as multi-head attention heads, {1024, 256, 256,
4} for the smaller model versus {2048, 512, 512, 8} for the big-
ger model. The input features are 80-dimensional filter-bank, and
the output is word piece models with 5000 subwords. The text en-
coder uses Transformer framework with 3- and 6-layer for 100- and
960-hour train data respectively. The differences between smaller
and bigger models are the same as those of the ASR models. We
use 0.002 learning rate for the multi-modal training on a single GPU
(v100), with the 0.1 dropout. The whole network is trained with
80 epochs, and after 70 epochs the cosine distance loss is enabled
with 10 epochs continuing training. For the grapheme-based CTC
training, we sample between the aligned speech and the text embed-
dings in each mini-batch, with each occupying 50% samples. For
the MLM training, we randomly mask 20% graphemes for each ut-
terance.

For the unpaired text pretraining, the output text embeddings are
taken as input to the 8th layer of the ASR encoder. During training,
During training, only ASR decoder parameters are updated, and the
remaining parameters are fixed. After that, we use a 0.001 learning
rate to fine-tune the ASR network with the paired speech-text data.

For inference, the beam sizes are 20 and 60 for the 100- and
960-hour train data, respectively.

4.3. Results

4.3.1. Results on the 100-hour train data

Table 1 presents the results of the multi-modal training using the
100-hour train data.



Table 1. WERs(%) of the proposed BiAM-based multi-modal train-
ing with the 100-hour train data, “cd” refers to cosine distance loss

Dev WER (%) Test WER (%)
clean other clean other

Baseline 6.3 17.4 6.5 17.3
Grapheme CTC 6.2 17.1 6.2 17.0

BiAM (w/o cd) 6.1 16.9 6.2 16.6
BiAM (w/ cd) 6.0 16.7 6.1 16.4

From Table 1, the proposed method gets obvious WER reduc-
tions (WERRs) on the four test sets, namely 4.76%, 4.02%, 6.15%
,and 5.20% WERR on dev-clean, dev-other, test-clean,
and test-other over the baseline respectively. Furthermore, we
found that cosine distance loss is very essential to get improved
results, over that case where only gCTC and MLM losses are em-
ployed. BTW, we also compare the proposed method with a multi-
task learning method, namely intermediate gCTC from the 8th layer
of the Conformer encoder, named “Grapheme CTC” in Table 1.
From Table 1, though the “Grapheme CTC” is also very effective,
the proposed method has achieved consistent performance improve-
ment. In what follows, we abbreviate the proposed BiAM with co-
sine distance loss as BiAM.

Table 2 reports the WERs of the proposed method with the 100-
hour train data using 960-hour train transcript as unpaired text data.

Table 2. WERs (%) of the proposed multi-modal training using the
BiAM with the 100-hour train data, puls taking 960-hour train tran-
script as unpaired text data

Dev WER (%) Test WER (%)
clean other clean other

Baseline 6.3 17.4 6.5 17.3

BiAM 6.0 16.7 6.1 16.4
+unpaired text 6.0 16.5 5.9 16.3

Given the unpaired text pretraining, Table 2 reveals the proposed
method gets further WERR on the 3 test sets of the overall 4 test sets
over the paired speech-text training method(see Table 1). Specifi-
cally, the WERRs are 4.76%, 5.17%, 9.23%, 5.78% on the four test
sets over the baseline model. We notice that the unpaired text data
pretraining has limited contribution to performance improvement.
We think the following reason mainly accounts for this. During the
unpaired text pretraining, we cannot get the transform W12 in Eq. 5,
so that the pretraining, naively employing the embedding from the
text encoder, is actually a mismatched training.

Table 3 reports WERs of the proposed method using 960-hour
train data.

Table 3. WERs (%) of the proposed BiAM-based multi-modal train-
ing method with 960-hour paired training data.

Dev WER(%) Test WER (%)
clean other clean other

Baseline 2.1 5.2 2.4 5.3
Grapheme CTC 2.1 5.2 2.4 5.2

BiAM 2.0 5.0 2.3 5.0

Fig. 3. One of the learnt bidirectional attention weight plots, W12

in Eq. 5. The horizontal axis represents speech embedding sequence
X, and the vertical axis is the text ones Y.

What is shown in Table 3 again validates the efficacy of the pro-
posed method for speech-text-based multi-modal training. It has
achieved consistent WERR over the baseline model. The WERRs
are 4.76%, 3.85%, 4.17% and 5.66% on the four test sets, respec-
tively. Besides, compared with the intermediate CTC-based multi-
task learning method, the proposed method also has a clear improve-
ment margin.

To see if the model has successfully learned the speech-to-text
alignment with the help of the BiAM module, Figure 3 plots the
alignment matrix after softmax operation, namely W12 in Equa-
tion 5. From Figure 3, we can see the clear monotonic alignment
pattern between the text and speech sequences, which again validates
the effectiveness of the BiAM method. In addition, the breakpoints
in the alignment correspond to the “Blank” label in Figure 3.

5. DISCUSSION & CONCLUSION

The above experimental results show that the proposed bidirec-
tional attention mechanism has clear advantages for speech-text
forced-alignment learning, yielding improved ASR performance in
a speech-text multi-modal training framework. However, the ex-
ploration is still far from perfect, and the limitations are at least as
follows. 1) The effectiveness of the unpaired text pretraining is not
fully demonstrated, particularly for full exploitation of the text data
provided by Librispeech corpus is yet to be done. 2) Unpaired text
pretraining method also needs a revisit in depth. So far, the pre-
training is a mismatched one, yielding under-performed results. To
realize a matched pretraining, we need to figure out an approach to
reconstruct the transform W12 in Eq. 5 for each unpaired utterance.
Actually, W12 is not only “diagonal” but also contains duration
information for each grapheme. We are putting more effort on this
in future.

To conclude the work in this paper, we have proposed a speech-
text-based multi-modal training framework for improving ASR per-
formance via a bidirectional attention mechanism. We demonstrated
its efficacy on Librispeech corpus with both 100- and 960-hour train
data, respectively. With the paired speech-text-based multi-modal
training, the proposed method has achieved up to 6.15% and 5.66%
WER reductions on 4 test sets under the two scenarios. Besides,
on the 100-hour low-resource data, we also demonstrated the effec-
tiveness of the proposed method for unpaired text data pretraining.
Future work will be focused on efficient unpaired text data pretrain-
ing.
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