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ABSTRACT

The present work addresses the segmentation of textures character-
ized by anisotropy and scalefree statistics, two generic properties of
use to model numerous real-world applications. This is achieved
by proposing to combine a complex dualtree multiscale (wavelet)
analysis within an inverse problem formulation aiming to estimate
anisotropy and scalefree local parameters and to group them into
piecewise homogeneous patches, jointly and in one single step. To
minimize the corresponding functional, a primal-dual proximal con-
vergent algorithm is devised and accelerated by taking advantage
of the strong convexity of the data-fidelity term. Segmentation per-
formance are assessed as function of the complexity of the task by
means of Monte Carlo simulations conducted over synthetic tex-
tures, defined from anisotropic scalefree stochastic models.

Index Terms— Anisotropy, scalefree, texture, dual-tree, total-
variation, proximal algorithms, strong convexity.

1. INTRODUCTION

Context. Texture segmentation constitutes a canonical task in Im-
age processing, ubiquitous in applications, that raised tremendous
amounts of researches along many different scientific lines (cf. e.g.,
[1, 2, 3, 4, 5, 6]). Also, a large variety of texture models were
proposed attempting to account for generic statistical properties
(cf. e.g., [7] for a review). In the present work, the relevance of a
nonsmooth convex proximal-based minimization is investigated, for
the segmentation of textures characterized by both anisotropy and
scalefree dynamics, two generic statistical features relevant in many
different applications (cf. e.g., [8, 9, 10, 11, 11, 12, 13]).
Related works. Image segmentation often relies on exploiting
geometry. Stochastic texture segmentation thus can be regarded
as a more challenging task, as they essentially have no geometry
and are characterized by their statistical properties only. Texture
segmentation is commonly based on two-step approaches: extrac-
tion/estimation of descriptors/features followed by segmentation.
Several research lines ranging from Non Negative Matrix Factor-
ization [4] to deep learning [14] have significantly contributed to
revisiting this two-step approach by combining into a single step
this feature estimation and segmentation. The main limitation of
supervised segmentation relies though on the need to use (usually
large) training datasets, as well as on large computing and storage
capabilities. Moreover, such large databases are often not available
because expert annotations may be too costly or even not feasible.
Therefore, despite the massive potential of (deep) learning, contexts
where large documented databases are not available, where bound-
ary estimation accuracy is of primer importance to the application,
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and where understanding the role of the features is as important
as segmentation performance, unsupervised segmentation strategies
remain of critical importance. In that spirit, in [15, 6], a one step
stochastic texture segmentation procedure was proposed, combining
fractal feature estimation and segmentation, formulated as a penal-
ized least square minimization problem. However, its extension to
segmentation based jointly on local scalefree and anisotropy features
remains an open question, addressed here.
Goals, contributions and outline. The present work proposes an
original texture segmentation formulation that combines, in a sin-
gle step, the estimation of anisotropic-scalefree local features, and
their grouping into piecewise homogeneous patches, solved with
appropriate proximal minimization procedure. To that end, Sec-
tion 2 details, first, the class of Gaussian stochastic processes used
as models for anisotropic scalefree textures, second, a directional
multiband multiscale (dual-tree complex wavelet) analysis, and pro-
poses, as a first contribution, the estimation, for such textures, of
global anisotropic-scalefree features from dual-tree coefficients. In
Section 3, as main contribution of this work, we propose a penal-
ized least squares minimization problem, that performs in a single
step a piecewise constant estimation of local anisotropic-scalefree
features, thus permitting an efficient a posteriori segmentation of
textures. Three variations of the corresponding functional are
detailed depending on the nature of the anisotropy. Section 4
develops an accurate and efficient algorithm based on proximal
operator theory to minimize the corresponding functional. It is
also shown how to exploit explicitly the strong convexity of the
data-fidelity term for convergence acceleration. Finally, Section 5
reports achieved segmentation performance, assessed by Monte
Carlo simulations conducted over synthetic prescribed piecewise
homogeneous anisotropic scalefree textures. It shows the benefits of
involving anisotropic (as opposed to isotropic only) local features
for segmentation.

2. HOMOGENEOUS ANISOTROPIC SCALEFREE
TEXTURES: MODELS AND ANALYSIS

Anisotropic scalefree Models. Gaussian random fields were clas-
sically used to model textures, especially through variations of the
Brownian fields [16, 17, 18, 19, 20]. Following this line, the Gaus-
sian field used in this work, denoted X : R2 → R, is here defined
via its power spectral density (PSD) f , with x = (x, y) and Ŵ the
Fourier transform of a Gaussian white noise:

(∀x ∈ R2) Xf (x) =

∫
R2

(ei⟨x,ξ⟩ − 1)
√
f(ξ)Ŵ dξ. (1)

To incorporate both anisotropy and scalefree (selfsimilarity) spa-
tial dynamics in separable and controllable manners, it has been con-



sidered in [16, 21] that the PSD f is written as:

f(ξ) = τ

(
ξ

||ξ||

)
||ξ||−2h

(
ξ

||ξ||

)
−2
, (2)

with topothesis function τ : S1 → R+ and Hurst function h : S1 →
[0, 1] chosen as angular functions where S1 is the unit circle in R2.
The resulting Gaussian field Xf is referred to as Anisotropic Frac-
tional Brownian Field (AFBF).
We are focusing here on several configurations of AFBF:
• When both τ and h are constant functions, τ(ξ) ≡ σ2 and
h(ξ) ≡ H , Xf simplifies to an isotropic selfsimilar field with self-
similarity exponent H , referred to as fractional Brownian field (H-
FBF) (Fig. 1 left).
• When h(ξ) ≡ H but τ depends on ξ, Xf remains exactly self-
similar but with anisotropy (H-AFBF) (Fig. 1 middle left).
• When h(ξ) depends on ξ, with τ(ξ) ≡ σ2, exact selfsimilarity
is lost and the scale free property is weakened into an asymptotic
property in the limit of high frequencies (or fine scales) (Fig. 1 mid-
dle right).
• When both h and τ depend on ξ, scalefree dynamics is only
asymptotic and anisotropy is complicated as it stems from two dif-
ferent and independent mechanisms, (Fig. 1 right).
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Fig. 1. Anisotropic Fractional Brownian Fields (AFBF).
Top: Examples of homogeneous textures Xf . Bottom: Function
S

(b)
j ≡

∑
k log2 |d

(b)
j,k|

2 (with d(b)j,k dual-tree complex wavelet coef-
ficient at scale 2j , location k and band b) where each color corre-
sponds to a different value of b. From left to right, textures are glob-
ally isotropic selfsimilar, anisotropic selfsimilar, anisotropic asymp-
totically selfsimilar (with anisotropy induced by h only), anisotropic
asymptotically selfsimilar.

Multiscale multiband wavelet analysis. It has been abundantly
documented that scalefree dynamics in time series and isotropic tex-
tures can be efficiently analyzed by means of multiscale (wavelet)
transforms [22]. For anisotropic textures, the use of complex and
direction-sensitive dependent wavelet transforms must be used,
amongst which the elegant and efficient dual-tree complex wavelet
decomposition is considered the state-of-the-art [23, 24, 25], thus
used here and briefly recalled below.

From a classical pair of univariate scaling function ϕh and
wavelet ψh [26] and from their Hilbert transform ψg = H(ψh) and
ϕg = H(ϕh). The dual-tree complex wavelet construction [23] de-
fines a collection ofB = 6 directional complex wavelets {ψ(b)(x)}.
For each scale 2j , location x, and band 1 ≤ b ≤ B, the wavelet
coefficients

d
(b)
j (x) = ⟨Xf (x), 2−j/2ψ(b)(2−jx)⟩ (3)

convey directional (hence anisotropic) multiscale information re-
lated to the spatial dynamics of texture Xf [23, 24, 25, 27].
Multiband wavelet analysis of homogeneous AFBF. Follow-
ing classical results in time series and real wavelets, see e.g.
[28, 29, 30, 31], it can be shown that the (complex) wavelet co-
efficients of 2D Gaussian fields (with PSD f ) with stationary in-
crements are zero-mean jointly stationary Gaussian processes with
variance:

E|d(b)j (x)|2 =

∫
R2

τ(ξ)||2−jξ||−2(h(ξ)+1)
2 |ψ̂(b)(ξ)|22jdξ. (4)

Calculations, not reported here but expanding to images and com-
plex wavelets those classically conducted in e.g., [32, 29, 30, 31]
for time series and real wavelets, show that the expectation E of
l
(b)
j (x) ≡ log2 |d

(b)
j (x)|2 follows a linear dependency with respect

to the logarithm of the scale, exactly for H-FBF and H-AFBF, and
approximately under mild hypothesis on mother-wavelets for AFBF
in general:

El(b)j (x) = v(b)(x) + jh(b)(x). (5)

By Eq. (1), El(b)j (x) does not depend on the location x for ho-
mogeneous textures, we can thus perform a global multiscale anal-
ysis by replacing ensemble averages E by spatial averages: S(b)

j ≡∑
x l

(b)
j (x).

Functions S(b)
j , computed from a single observation of the tex-

tures displayed in Fig. 1(top row), are reported in Fig. 1(bottom row).
Their behaviors as functions of the octave j (log2 of the scales 2j)
constitutes the multiscale multiband signatures of the anisotropy and
scalefree properties of the textures Xf :
• For H-FBF, v(b) andH(b), for b = 1, . . . , B, no longer depend
on directions and are thus all equal.
• For H-AFBF, the v(b) depend on directions, hence on b, while
the H(b) do not.
• For AFBF in general, both the v(b) and the H(b) depend on di-
rections, hence on b.

In practice, the estimations of the v(b) and the H(b) stems from
linear regressions of S(b)

j against j. Such linear regressions can be
written as, for each b = 1, . . . , B:

(v̂(b), ĥ(b)) = argmin
(v,h)∈R2

∑
j

(S
(b)
j − jh(b) − v(b))2. (6)

3. PIECEWISE HOMOGENEOUS ANISOTROPIC
SCALEFREE TEXTURES: MODELS AND ANALYSIS

Piecewise AFBF model. For modelling a wider range of real-world
textures, we propose to use piecewise homogeneous textures de-
fined by concatenating L different AFBF textures (Xfℓ

)Lℓ=1 (with
respective τ ℓ and hℓ) according to random partitions of L non-
overlapping regions, whose union covers the whole support of the
image. The choices of different f ℓ results into textures with piece-
wise homogeneous scalefree and anistropic statistical properties.
Examples of such textures are shown in Fig. 3 for L = 2 and sev-
eral choices of τ ℓ and hℓ. We now focus on discrete texture, with
Ω = {1, . . . , N}2and locations denoted by k = (k1, k2).
Local analysis. The goal is to be able to segment a single obser-
vation of such heterogeneous textures into piecewise homogeneous
subtextures when both fℓ and the partition are unknown. Hetero-
geneity precludes global analysis. Instead, the intuition is to perform
a local (pixel-wise, for each k) joint estimation of v(b)k and h(b)

k and
to group the pixel k into a region where both the v(b)k and h(b)

k can



be considered identical. To that end, an intuitive idea is to mimick
the global estimations by means of linear regressions, as in Eq. (6),
into a collection of local linear regressions:

(v̂, ĥ) = argmin
(v,h)∈RBN2×RBN2

∑
b

∑
j

∑
k

(l
(b)
j,k − jh

(b)
k − v

(b)
k )2.

However, this would result into high variance estimates, and no re-
lation between the estimates for the different directions b, and thus
poor segmentation performance. Therefore, instead of a 2-step pro-
cedure, first local estimation, second segmentation, we propose here
to perform a 1-step local estimation enforcing i) piecewise constancy
of the v(b)k and h(b)

k through the space, and ii) cooperation between
the different directions b.

To enforce piecewise constancy in the local estimates of the
anisotropic scalefree features, a spatial horizontal and vertical to-
tal variation (ℓ1-norm penalization) is used. To ensure the coloca-
tion of changes to be cooperatively detected by the different bands
b ∈ {1, . . . , B}, a mixed across space and bands, ℓ2,1-norm, pe-
nalization is involved, thus resulting in the following functional to
minimize:

(v̂, ĥ) = argmin
(v,h)∈RBN2×RBN2

∑
b

∑
j

∑
k

(l
(b)
j,k − jh

(b)
k − v

(b)
k )2

+ λ
∑
k

(∑
b

|h(b)
k1+1,k2

− h
(b)
k1,k2

|2 + |h(b)
k1,k2+1 − h

(b)
k1,k2

|2

+ α|v(b)k1+1,k2
− v

(b)
k1,k2

|2 + α|v(b)k1,k2+1 − v
(b)
k1,k2

|2
)1/2

(7)

For notation and compactness purposes, this is rewritten as:

(v̂, ĥ) = argmin
(v,h)

1

2

∑
k

||lk−A(v⊤
k , h

⊤
k )

⊤||22+λ∥Dα(v⊤, h⊤)⊤∥2,1

(8)
where, for every location k, lk = (l

(b)
j,k)j,b and

∥Dα(v⊤, h⊤)⊤∥2,1 =
∑
k

√
||(Dh)k||22 + α||(Dv)k||22

where D = (D1, D2) models the first horizontal and vertical differ-
ence applied on each band. Further, MatrixA can take several forms
depending on the assumed underlying texture model:
• For H-FBF, assumed anisotropy leads to estimate locally two
features, vk ≡ v

(b)
k and hk ≡ h

(b)
k for all b, resulting in a BJ × 2

matrix,

Aiso =

1 J
...

...
1 J


with J the the number of scales involves in local linear regressions
and where 1 = (1, · · · , 1)⊤ ∈ RJ and J = (1, 2, · · · , J)⊤ ∈ RJ .
Matrix Aiso is reminiscent of one of the state-of-the-art procedure
described in [6] based on real wavelet and a single band B = 1.
• For H-AFBF, assumed anisotropic selfsimilarity leads to esti-
mate B + 1 = 7 local features (e.g. (v(b)k )1≤b≤B and hk ≡ h

(b)
k ) ,

resulting in a BJ × (B+1) matrix, (with 0 = (0, · · · , 0)⊤ ∈ RJ ),

Ah =


1 0 . . . 0 J
0 1 0 . . . J
...

...
. . .

0 . . . 0 1 J


• For generic AFBF with anisotropy and asymptotical only self-
similarity, 2×B = 12 local features need to be estimated leading to

the BJ × 2B matrix,

Afull =


1 0 . . . 0 J 0 . . . . . . 0
0 1 0 . . . 0 J 0 . . . 0
...

...
0 . . . 0 1 0 . . . . . . 0 J

 .

4. PROXIMAL MINIMIZATION

Proximal minimization algorithm. To solve Problem (8), various
proximal strategies could be employed [33]. Notably, fast schemes
can be employed by using the fact that the data-fidelity is γ-strongly
convex, for some γ > 0. Hence, we choose to use the primal-dual
Chambolle-Pock algorithm [34] with strongly convex acceleration,
such that for every iteration t ≥ 0:

zt+1 = proxσt(λ||·||2,1)∗(zt + σtλD
(α)z̃t)

ut+1 = proxτtF
(ut − τtλD

(α)∗zt+1)
θt = 1√

1+2γτt
, τt+1 = τtθt, σt+1 = σt/θt

z̃t+1 = zt+1 + θ(zt+1 − zt).

where F =
∑

k
1
2
||lk−A · ||22 and zt = (v⊤

t , h
⊤
t )

⊤, which is initial-
ized as the solution of the ordinary least squares linear regression.
Both proximity operators involved are well known and have closed-
form expressions documented in the literature [35].

Lemma 1. The strong convexity constant of F : γ = λmin(A
∗A), is

given by :

λmin(A
∗
isoAiso) =

BR2 +BR0 −B
√

(R2 −R0)2 + 4R2
1

2
, (9)

λmin(A
∗
hAh) =

BR2 +R0 −
√

(BR2 −R0)2 + 4BR2
1

2
, (10)

λmin(A
∗
fullAfull) =

λmin(A
∗
isoAiso)

B
. (11)

with B the number of bands and Rn =
∑J

j=1 j
n.

Theorem 1. Let σ0τ0λ
2||Dα||2 < 1 and γ provided by Lemma

1, then the sequence (zt)t converges to ẑ where ẑ minimizes (8).
Additionally, ||zt − ẑ|| = O(1/t2).

5. PERFORMANCE ASSESSMENT

5.1. Numerical simulation set-up

Simulation set-up. Simulations were conducted in Python. Tex-
tures used here, such as those displayed in Figs. 1 and 3, were
synthesized using the PyAFBF library, which relies on the (τ, h)
parametrization in (2), and are of size 256 × 256. Estimations are
performed using octaves j = {1, . . . , J = 7}. Chambolle-Pock
algorithm is run until stabilisation of the objective function (500
iterations).
Texture parametrization. To produce experiments for which per-
formance assessment is simple to understand and analyze, the
functions τ(θ) and h(θ), with θ ∈ [−π/2, π/2], of the homo-
geneous textures or piecewise homogeneous textures used here are
parametrized on the unit angular disk as illustrated in Fig. 2, with
two intensity levels ν+ and ν−, a center µ, and a width δ. Consid-
ered textures are as follows:
Texture 1: h(θ) ≡ 0.65, τ(θ) ≡ 5
Texture 2: h(θ) ≡ 0.7, τ(θ) ≡ 5
Texture 3: h(θ) ≡ 0.7, τ : {µτ = 0, δτ = π

4
, ν−τ = 1, ν+τ = 20}



Texture 4: h(θ) ≡ 0.7, τ : {µτ = π
8
, δτ = π

8
, ν−τ = 1, ν+τ = 20}

Texture 5(µ): h: {µh = µ, δh = π
6
, ν−h = 0.5, ν+h= 0.7}, τ(θ) ≡ 1

Texture 6: h : {µh = 0 , δh = π
6
, ν−h = 0.5, ν+h = 0.7},

τ : {µτ = 0, δτ = π
4
, ν−τ = 1, ν+τ = 20}.
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Fig. 2. Parametrization of τ(θ) and h(θ) on the unit disk.

5.2. Local analysis and texture segmentation

Segmentation principle. The local estimates v̂(b) and ĥ(b) obtained
from the minimization problem (8) with the algorithm described in
Section 4 are concatenated as an array of coordinates for each pixel,
to which a standard K-means clustering procedure is applied, with
a priori prescribed numbers of clusters (K=2 in our simulations), to
yield the final 2-class labeled images.
Visual qualitative assessment. The performance of the proposed
texture segmentation procedure are first illustrated visually and qual-
itatively on four different pedagogical mixtures of piecewise homo-
geneous textures, withK = 2 regions only. The mask used to create
these piecewise homogeneous textures is very close to the estimated
one displayed in Fig. 3 (bottom right) for which we have almost ex-
act recovery.

Mixture 1 (Texture 1 vs. Texture 2) consists of two isotropic
textures with different selfsimilarity parameters h. Fig. 3 (top row)
shows that the segmentation obtained with any of the three operator
A achieves satisfactory and comparable performance, as indeed, in
principle Aiso is sufficient to feel the change in texture. Mixture 2
(Texture 3 vs. Texture 4) consists of two H-AFBF with same con-
stant Hurst function h but different functions τ . As expected, Aiso

fails to achieve segmentation, as it cannot capture anisotropy, while
Ah and Afull perform comparably well, as in principle Ah should
have enough freedom to feel changes in function τ only. Finally,
Mixture 3 (Texture 5 (µ = −π

3
) vs. Texture 5 (µ = −π

6
)) and Mix-

ture 4 (Texture 5 (µ = −π
3

) vs. Texture 5 (µ = 0)) both combine
AFBF with changes in h but same τ . As expected, Afull only is able
to probe anisotropy in a rich enough manner to achieve satisfactory
classification.

5.3. Global analysis of homogeneous textures

As illustration, Fig. 1 reports the B functions S(b)
j , averaged across

10 realizations for four different homogeneous textures. For H-FBF
(left, Texture 2), the B functions S(b)

j collapse one on the other as
expected from isotropy. For H-AFBF (middle left, Texture 3), the
B functions S(b)

j have same slope but different intercepts. For the
two generic AFBF (right plots, Textures 5(µ = −π

3
) and 6), the B

functions S(b)
j have different behaviors across scales, as signatures

of specific forms of anisotropies.
Quantitative segmentation performance assessment. Segmenta-
tion performance are further assessed quantitatively by average over
10 realisations of a mixture between Texture 5 (µ = −π

3
) and Tex-

ture 5 (µ)), consisting of AFBF with functions h that differ in the
locations of their centers such that ∆µh = −π

3
− µ. For each of the

Fig. 3. Texture segmentation of piecewise homogeneous AFBF.
Textures Xf (left) and corresponding segmentation using (from left
to right) Aiso, Ah and Afull in (8), for four different K = 2 mixtures:
H-FBF with differentH (top),H-AFBF with different τ but same h
(2nd row), AFBF with different h but same τ (3rd and bottom rows).
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Fig. 4. Segmentation perormance. Percentage of misclassified pixels
depending on the rotation angle between hurst functions and choice
of regularisation parameter λ. From left to right the model used to
obtain segmentations is induced by Aiso, Ah and Afull.

three possible choice of matrix A, performance are computed using
a grid of regularization hyperparameters λ. Fig. 4 compares aver-
age (± standard deviations) error classification as functions of ∆µh,
for the λ yielding best performance for each choice of A. Fig. 4
shows that Aiso fails to perform any segmentation and that while Ah

andAfull are achieving comparable performance for the mixture with
largest differences ∆µh ≃ π/2, Afull proves to be more robust for a
larger range of ∆µh.

6. CONCLUSIONS AND PERSPECTIVES

Artificial intelligence (AI) and deep neural networks (DNN) con-
stitute natural alternatives against which to compare segmentation
performance. However, the design of DNN architectures remains an
on-going challenge, involving a competition between always larger
computer resources and theoretical foundations. In that perspective,
our plans for future investigations are to consider the unrolling prox-
imal algorithms, proposed and assessed here, as a means to design an
efficient and frugal DNN architecture, in an attempt to contribute to
sustainable AI, with simpler architectures and smaller training sets.
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