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ABSTRACT

This work studies knowledge distillation (KD) and addresses

its constraints for recurrent neural network transducer (RNN-

T) models. In hard distillation, a teacher model transcribes

large amounts of unlabelled speech to train a student model.

Soft distillation is another popular KD method that distills

the output logits of the teacher model. Due to the nature of

RNN-T alignments, applying soft distillation between RNN-

T architectures having different posterior distributions is chal-

lenging. In addition, bad teachers having high word-error-

rate (WER) reduce the efficacy of KD. We investigate how

to effectively distill knowledge from variable quality ASR

teachers, which has not been studied before to the best of our

knowledge. We show that a sequence-level KD, full-sum dis-

tillation, outperforms other distillation methods for RNN-T

models, especially for bad teachers. We also propose a vari-

ant of full-sum distillation that distills the sequence discrimi-

native knowledge of the teacher leading to further improve-

ment in WER. We conduct experiments on public datasets

namely SpeechStew and LibriSpeech, and on in-house pro-

duction data.

Index Terms— Recurrent neural network transducer,

knowledge distillation, semi-supervised learning

1. INTRODUCTION & RELATED WORK

Training high-performance end-to-end automatic speech

recognition (ASR) systems such as recurrent neural net-

work transducer (RNN-T) [1] heavily depends on the amount

and the quality of the transcribed training data. It is usually

difficult and very expensive to collect high-quality human

transcription.

Knowledge distillation (KD) [2] is a method to transfer

knowledge from a teacher model to a (smaller) student model.

The teacher model generates pseudo labels using unsuper-

vised data for training a student model. However, the qual-

ity of the pseudo labels depends on the quality of the teacher

model where a bad teacher, i.e with a high word-error-rate

(WER), can generate noisy pseudo labels which do not help in

training good student models. To the best of our knowledge,

∗Work performed during an internship at Google.

there has been no prior work that investigates the impact of

bad teachers for KD in the context of ASR. [3] shows the-

oretically and empirically that distilling from a pool of bad

teachers (randomly selected) helps to learn a better student

model. [4, 5] proposes a simpler idea which is to add noise to

the teacher’s logits to simulate the idea of training with mul-

tiple bad teachers. Both [3, 4] can be seen as regularization

methods. There has also been related work in the context of

adversarial label learning [6, 7] where students are trained to

minimize the error caused by noisy labels generated by bad

teachers. However, all these works use simple binary classi-

fiers and focus more on theoretical analysis.

In addition, it is common to apply KD at the level of out-

put logits [2]. Soft distillation can be used to distill the RNN-

T alignments of the teacher model. However, this method is

challenging when the teacher and student models have dif-

ferent alignments such as distilling knowledge from a non-

causal teacher to a causal student. To fix this issue, [8, 9]

shift the teacher alignments to the right when applying soft

distillation since the causal student would emit labels later

because of missing future context. However, it is a heuris-

tic solution that requires finding the frame shift and increases

the causal latency. In addition, when using soft distillation,

the teacher and student models must have the same time di-

mension which limits the ability to train student models with

higher time reduction for reducing recognition latency. [10]

investigates different KD methods for connectionist tempo-

ral classification models [11] including sequence-level KD,

which has not been studied for RNN-T models.

In this paper, we investigate how to effectively distill

knowledge from varying quality RNN-T teachers including

bad teachers which have not been studied before. We apply

full-sum distillation, which is a sequence-level KD method

that distills the sequence posterior probabilities, for the first

time for RNN-T models using various loss functions. We

also propose a variant of full-sum distillation which distills

the sequence discriminative knowledge of the teacher model

that leads to further improvements. We show that full-sum

distillation is robust towards discrepancies of RNN-T align-

ments between the teacher and student models and that it
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scales when applied on our in-house data.

2. RNN-T MODEL

In this work, we focus on the standard RNN-T model [1]. Let

X denote the acoustic feature sequence of a speech utterance

of length T . Let Y denote the output label sequence (e.g char-

acters) of length U . Then, the sequence posterior probability

is defined as:

P (Y |X) =
∑

a∈β−1(Y )

P (a|X) (1)

where a belongs to the set of all possible alignments of Y
consisting of output labels and a special blank label. β is

a mapping function that maps an alignment sequence a to an

output label sequence Y by removing blank labels. The RNN-

T training loss is given by the negative log sequence posterior

probability: LRNN-T = −logP (Y |X). This is also known as

the full-sum (FS) loss. The probability P (Y |X) is computed

over a lattice of dimension T × U . At each position (t, u)
in the lattice, features from the encoder and the prediction

networks of the RNN-T model are fed to a joint network that

computes a probability distribution P (k|t, u) for each output

label k including the blank label. The RNN-T loss can be

computed efficiently using forward-backward algorithm [1].

3. RNN-T DISTILLATION METHODS

The most common distillation methods are hard distillation

and soft distillation [2]. Hard distillation uses the pseudo la-

bels generated by a teacher model to train a student model.

It is also possible to use a mix of pseudo labels and ground

truth labels (supervised data). For RNN-T models, this means

that the student model would learn the alignment by itself (i.e

without any constraints) by minimizing the RNN-T loss. Soft

distillation is applied by matching the posterior probability

distributions for each output label k (including blank) of both

teacher and student models over the lattice for each position

(t, u) [12]. This can be achieved using Kullback-Leibler (KL)

divergence loss as follows:

LSoft-Distill =
∑

(t,u)

∑

k

P̃ (k|t, u) log

[
P̃ (k|t, u)

P (k|t, u)

]
(2)

where P̃ and P correspond to the teacher and student prob-

ability distributions respectively. [12] proposes an efficient

method to apply soft distillation for RNN-T models by dis-

tilling only three posterior probabilities which are for target

output label, blank label, and the rest labels. This reduces the

memory complexity from O(T ×U×K) to O(T ×U) where

K is the vocabulary size. We use this efficient method for

experiments with soft distillation.

4. FULL-SUM DISTILLATION METHOD

The main motivation behind this work is to utilize a simple

yet effective KD method that is robust in case of noisy labels

and when the architecture or design of the student and teacher

models differs. Therefore, we use full-sum (FS) distillation,

as a sequence-level KD method, that simply distills the FS

probabilities between the teacher and student model. The loss

can be defined as:

LFS-Distill = F(P̃ (Y |X), P (Y |X)) (3)

where F denotes the loss function used to minimize the dif-

ference between both distributions. In this work, F is defined

as L1 loss or mean squared error (MSE) loss so that it is sym-

metric and is not impacted by any transformation of its two

arguments. Therefore, we found that in practice using log-

space probabilities makes training more stable. In addition,

we can formulate the FS-Distill loss in terms of RNN-T loss

as follows:

LFS-Distill = F(−logP̃ (Y |X),−logP (Y |X)) (4)

Thus, we only need to compute the RNN-T losses of both

teacher and student models to compute FS-Distill loss. More-

over, the FS-Distill loss can be formulated to distill the se-

quence discriminative knowledge of the teacher model to the

student model. This can be done by distilling the approxi-

mated normalized sequence posterior probabilities using an

N-best hypotheses list generated by the teacher model. This

loss is called FS-Norm-Distill loss and can be written as fol-

lows:

F

(
log P̃ (Y |X)∑

Y ′∈BN-best
P̃ (Y ′|X)

, log P (Y |X)∑
Y ′∈BN-best

P (Y ′|X)

)
(5)

where Y ′ belongs to the N-best hypotheses list denoted by

BN-best.

Note also that FS distillation method does not depend on

time dimension as compared to soft distillation which means

that the teacher and student models can have different time

subsampling rates.

5. EXPERIMENTS

In this section, we present results on different public corpora,

namely, SpeechStew [13] (Section 5.1) and LibriSpeech [14]

(Section 5.2). For distillation experiments, no dropout or data

augmentation is applied to the speech input of the teacher

model since it was observed that this leads to better perfor-

mance [8]. In addition to that, training batches are constructed

by sampling 10% from the supervised data and 90% from the

unsupervised data. We use a beam size of 8 to generate hy-

potheses for unsupervised data and then select the top-1 hy-

pothesis as the target label sequence. All student models are

trained from scratch. All models use 80-dimensional Log-

Mel filterbank features as input and 1024 wordpieces as out-

put labels. No language model is used for recognition.

5.1. SpeechStew Setup

We train varying quality teacher models using SpeechStew

dataset [13] to better understand the effect of each distilla-

tion method depending on the teacher’s quality. SpeechStew

consists of 5K hours and it is a mix of common speech public

corpora. We split the dataset into 2 parts: supervised data con-

sisting of 250 hours (5%) and unsupervised data consisting

of 4.75K hours (95%). All data is used for all experiments.

We use ConformerL, ConformerM, and ConformerS RNN-T
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Fig. 1: Comparison between soft and full-sum distillation us-

ing varying quality teachers. The horizontal dashed line is

the WER of the student model. WERs are computed as the

average WER on IHM and SDM1 dev sets of AMI dataset.

Model Teacher

IHM SDM

dev eval dev eval

Student - 23.3 24.5 44.7 48.6

Hard

L

24.4 24.1 38.4 40.9

Hard + Soft 17.9 17.9 35.3 38.4

Soft 17.2 17.1 34.8 38.1

Hard

S3

27.6 28.2 42.9 45.9

Hard + Soft 22.3 23.1 42.3 46.1

Soft 22.1 22.9 42.4 46.3

Table 1: Comparison between soft and hard distillation.

architectures [15] to train teacher models having a different

number of parameters. In addition, we train on subsets of

the supervised training data to increase the WER variance be-

tween different teacher models. We train 5 different teacher

models named as L, S, M5, L5, and S3 where the letter corre-

sponds to which conformer architecture is used and the num-

ber represents the percentage of supervised training data (e.g

M5 is ConformerM trained on all supervised data). Teachers

L and S are trained using all SpeechStew data. The student

model follows ConformerS architecture and it is trained using

the supervised data.

5.1.1. Distillation Results

As our aim is to improve knowledge distillation when using

bad or high-WER teacher models, we report results on the

AMI dataset [16] since it is noisy and considered a difficult

task. Table 1 shows the results of applying hard distillation

using the strongest teacher L and the weakest teacher S3. We

can observe that even with teacher L, hard distillation is much

worse than using soft distillation. In addition, WER increases

when using the weakest teacher S3. The reason behind this is

that the pseudo labels generated by such teacher models are

very noisy, especially on AMI which requires utilizing other

distillation methods. Figure 1 shows a comparison between

soft distillation and FS distillation when using varying qual-

ity teachers. We use L1 loss for FS distillation. First, we can

observe that the quality of the teacher model has a signifi-

cant effect on improving the WER of the student model. FS

distillation outperforms soft distillation for all teachers. The

student model outperforms the teacher models M5, L5, and

F Norm
IHM SDM

dev eval dev eval

MSE
No 17.7 17.5 34.4 37.6

Yes 16.7 16.5 33.5 36.8

L1
No 16.1 16.4 33.1 36.2

Yes 15.8 15.7 32.3 35.5

Table 2: Comparison between using L1 and MSE loss func-

tions for FS and FS-Norm distillation for teacher L.

S3 when using FS distillation whereas with soft distillation it

only outperforms S3. This shows the robustness of FS distil-

lation method.

5.1.2. Comparison between L1 and MSE loss for Full-sum

Distillation

We investigate using two different losses for FS distillation:

L1 loss and MSE loss. We select the strongest teacher L for

distillation experiments and present the results in Table 2. We

can observe that using L1 loss gives much better performance

in terms of WER compared to MSE loss. We argue that the

training convergence is affected by outliers when using MSE
loss. To analyze this, we plot (plot is missing due to lim-

ited space) the distillation loss value using 100 segments from

AMI dataset. For the case of MSE, there are many outliers,

and the distillation loss value is quite large while this is not

the case when using L1. In addition, if we apply approxi-

mated normalization as described in Equation (5), then we do

not observe outliers anymore which could explain also why

using FS-Norm variant helps (more details in Section 5.1.3).

5.1.3. Full-sum Norm Distillation

Furthermore, we conduct experiments using FS-Norm vari-

ant (Equation (5)) and the results are shown in Table 2. We

use the strongest teacher L for distillation. Applying normal-

ization further improves the WER of the student model espe-

cially when using MSE loss since it reduces outliers.

5.2. LibriSpeech Setup

We conduct experiments on LibriSpeech (LS) 960 hours [14]

and LibriLight (LL) 60k hours [17]. LL consists of unlabeled

data which is the main target data for distillation. The teacher

model is a non-causal w2v-BERT XL Conformer model fol-

lowing this setup [8]. It has 600M parameters. It is pre-

trained using w2v-BERT [18] on LL dataset and then itera-

tive training is applied using offline pseudo labels to further

improve the performance. The pseudo labels used were gen-

erated by a w2v-BERT XXL model [18] having 1B parame-

ters. The WERs [%] of w2v-BERT XL and w2v-BERT XXL

teacher models are 1.3/2.5/1.4/2.6 and 1.4/2.4/1.4/2.5 on

dev-clean, dev-other, test-clean, and test-other respectively.

The non-causal student model is based on the ConformerL

architecture [15]. It has 120M parameters. The causal stu-

dent model uses the same architecture but with causal con-

former blocks where 65 frames are used as past context for

self-attention modules and no future context. SpecAugment

[19] is applied for data augmentation using the same hyper-



Table 3: Comparing distillation methods from non-causal

w2v-BERT XL teacher model to causal/non-causal student

model on LibriSpeech dataset. WERs [%] are reported on

dev-other and test-other sets.

Model
Non-causal Causal

dev test dev test

Student 4.4 4.6 10.4 9.5

Hard 3.6 3.6 9.4 8.6

Soft 3.7 3.8 8.4 7.9

Hard + Soft 3.7 3.8 8.6 8.2

Full-sum 3.2 3.3 8.3 7.7
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Fig. 2: WERs[%] using soft distillation from non-causal

teacher to a causal student. The alignment of the teacher

model is shifted by N frames to the right. The horizantal

dashed line corresponds to the WER of FS distill without any

shifting. The WERs are computed by averaging over all dev

and test sets of LibriSpeech.

parameters as [8].

5.2.1. Causal/Non-causal Distillation Results

Experiments for comparing different KD methods for LS
task using non-causal and causal student models are shown

in Table 3. In both cases, we can observe that FS distilla-

tion outperforms other distillation methods. For non-causal

student experiments, FS distillation achieves 27% and 28%
relative improvement in terms of WER on dev-other and

test-other sets respectively compared to the student baseline

model. Moreover, FS distillation achieves 11% and 8.3%
relative improvement compared to hard distillation on dev-

other and test-other sets respectively. When using a causal

student model, the RNN-T alignments of the student model

do not match the ones of the teacher model due to the lack of

future context that will delay the emission of output labels.

Thus, we can observe that soft distillation only works well

when we shift the alignments of the teacher to the right by N

frames. Figure 2 shows that we need to shift by 9 frames to

achieve good performance. It also requires finding the cor-

rect frames shift. FS distillation is robust towards mismatch

of alignments and can already achieve better results without

any shifting. Overall, we achieve 20% and 18.9% relative

improvement in terms of WER on dev-other and test-other

sets respectively compared to the causal student model.

6. LARGE SCALE DISTILLATION

In this section, we demonstrate the robustness and scala-

bilty of full-sum distillation to models trained with several

Table 4: Comparing distillation methods from 120M teacher

(causal and non-causal) model to 120M causal student

model.

Model
Bengali Malayalam

Causal Non-causal Causal Non-causal

Teacher 16.4 13.3 33.4 32.5

Hard 15.4 15.1 37.5 35.2

Soft 15.6 15.4 35.4 33.6

Full-sum 15.0 14.9 33.9 33.3

thousands of hours of labeled and unlabeled data in two In-

dic languages, Bengali and Malayalam. The in-house ASR

training data comprises of short voice search utterances that

are anonymized and hand-transcribed, and representative of

Google’s voice search traffic. The supervised training data

for Bengali and Malayalam contains 7.5M and 2.6M tran-

scribed utterances which approximately corresponds to 9.4K

and 4.7K hours respectively. This data is further augmented

with various noise styles [20], time and frequency masking-

based augmentation [19] and simulated multi-microphone

utterances [21]. The unsupervised training data consists

of 59.8M utterances for Bengali and 23.5M utterances for

Malayalam which approximately corresponds to 75K and

42.5K hours respectively. The development set is a small

fraction of the training set held out for validation. The test

set comprises of anonymous, transcribed utterances from

the voice-search task (3.7k utterances for Bengali, 9.2k ut-

terances for Malayalam). We report error rates using the

transliteration-optimized WER metric described in [22] to

accommodate mixed writing scripts frequently seen in Indics.

Both non-causal and causal models are chosen to act as

teacher, while the student is kept as causal model. All the stu-

dent models used in this experiment are initialized with the

causal teacher model. Table 4 shows that the full-sum (L1

with norm) provides consistent gains across both Bengali and

Malayalam for both causal and non-causal teacher models.

We observed that the production data contains several out-

liers, as corroborated by a high WER of 16.6% obtained using

the full-sum MSE loss on Bengali with non-causal teacher.

7. CONCLUSIONS

We investigated using sequence-level knowledge distillation

(KD) methods, namely full-sum (FS) distillation, for recur-

rent neural network transducer (RNN-T) models for the first

time. We showed how to effectively distill knowledge from

bad teacher models that can generate noisy pseudo labels for

training student models. We also showed that FS distillation is

robust towards discrepancies of RNN-T alignments between

teacher and student models. We applied FS distillation on

public data and large scale in-house production data, where it

outperformed other KD methods.
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