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ABSTRACT
Pitch estimation of a target musical source within a multi-source
polyphonic signal is of great interest for music performance analy-
sis. One possible approach for extracting the pitch of a target source
is to first perform source separation and then estimate the pitch of
the separated track. However, as we will show, this typically leads
to poor results. As an alternative to this approach, we introduce a
timbre-aware pitch estimator (TAPE), which estimates the pitch of
a target source in an end-to-end manner without the need for an ex-
plicit source separation step. Opposed to existing approaches that
assume the predominance of a lead voice, our approach builds upon
other cues that only rely on the timbral characteristics. Our results on
real violin–piano duets show that, without any pre-processing step,
TAPE trained on synthetic mixes outperforms the sequential proce-
dure of source separation and pitch estimation under many settings,
even if the target source is not predominant.

Index Terms— Pitch Estimation, Audio Source Separation,
Music Performance Analysis, Weakly Supervised Learning

1. INTRODUCTION

Pitch estimation in real-life musical settings is a challenging prob-
lem. Most pitch estimation methods restrict the scenario to clean
monophonic signals, and use time [1, 2, 3] or frequency [4, 5]
domain techniques. Whereas the recent deep learning models,
e.g., [6, 7], can handle realistic noisy settings, pitch estimation of
a target source within a polyphonic music signal remains to be a
challenge [8]. First attempts to solve this problem involve multi-
pitch estimation without source assignments [9] and predominant
melody extraction, i.e., pitch extraction for the dominant source in
a polyphonic setting [9, 10, 11]. Since the dominant source in most
musical traditions and genres is the singing voice, research efforts
focused in particular on vocal melody extraction [8, 12, 13, 14].

In the literature, one can find two main strategies for vocal
melody extraction: the direct approaches [12, 13, 14] and source-
separation-based [15] methods. Direct approaches generally employ
multi-resolution architectures that model human auditory perception
to extract the melody from the polyphonic music [12, 13, 14, 16].
The second strategy for vocal melody extraction involves singing
voice separation [8, 15, 17]. Earlier approaches divide the problem
into explicit source separation and pitch estimation stages [15]. Re-
cently, joint learning of source separation and pitch estimation has
been proposed [8, 17]. In [8], Jansson et al. investigate different
strategies for vocal pitch estimation from a mixture of different in-
struments and indicate that joint learning of source separation and
pitch estimation leads to better results for both of these problems.

In this paper, we investigate violin pitch estimation from violin–
piano duets. Duets, and especially duets of a monophonic instrument
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Fig. 1. Comparison of the two methods to estimate the violin pitch in
a violin–piano duet. (a) Two-stage method with source separation as
a preprocessing step, (b) End-to-end timbre-aware pitch estimation.

and piano, are the most common scenario in chamber music. Solo
instruments, e.g., violin, are commonly played with piano in mu-
sic exams and auditions. Thus, music performance analysis under
the duet setting is of great interest to music education technologies.
While predominant melody and vocal melody extraction assume that
the main instrument always plays the melody, this assumption does
not apply to duets since the piano part also frequently takes over the
lead through dialogues and the contrapuntal texture of compositions.

A common approach to estimate the pitch of an instrumental
source in a duet is using source separation as a preprocessing step,
as depicted in Figure 1a. Instead of applying an explicit source sep-
aration step, we propose an end-to-end timbre-aware pitch estimator
(see Figure 1b). Our proposed model shares similarities with the
multi-instrument transcription task [18, 19], which aims at inferring
the instrument labels alongside transcription. Similar to the multi-
instrument transcription, we aim to identify the instrument with its
pitch contour. However, we only focus on a single instrument and
strive for higher precision in the frequency domain.

As shown here with the violin–piano duets as an example, this
scenario can be extended to other instruments’ duets with piano and
allow the analysis of musical performances in multi-instrument set-
tings. Our main contributions in this paper are as follows:

• We introduce the Timbre-Aware Pitch Estimator (TAPE1),
which works directly on the polyphonic mix waveform and
can estimate the pitch of a target source (violin),

• We propose a novel synthetic audio mixing strategy that en-
ables the training of timbre-aware pitch estimators using only
single-instrument datasets in a curriculum,

• We benchmark different music source separation (MSS)
methods for the task of downstream violin pitch estimation,

• As our main result, we show that the proposed TAPE model
significantly outperforms SOTA pitch estimators, even if they
receive source-separated audio as input.

1https://github.com/MTG/tape



2. TIMBRE-AWARE PITCH ESTIMATOR

The proposed two-stream architecture in Figure 2 works on raw au-
dio sampled at 16 kHz and closely resembles the previous multi-
resolution architectures in the vocal melody extraction literature [12,
13, 14]. We train this model on single-instrument datasets using a
novel synthetic mixing paradigm that ensures timbre-awareness.

2.1. Two-Streams Model Architecture

As shown in Figure 2, TAPE comprises two convolutional neural
networks with equal channel capacity and a transformer module that
enables the information flow between them. Following the two-
stream modeling of the human auditory system [16], we use the
six convolutional layers of CREPE [6] as the two feature-extracting
streams and connect them through a two-layer transformer [20]. Our
use of convolutional and attention-based architectures is inspired by
the findings from Dai et al. [21]. A detailed description of the four
TAPE modules in Figure 2 is as follows:

Main Stream is the first six layers of CREPE [6] pitch estimator
without any modification. This is the main stream responsible for
pitch estimation, which receives 1024 waveform samples as input.

Attendant Stream is structurally identical to the main stream, but
with a larger receptive field through dilations and strides in the con-
volution. Human accuracy in pitch tracking increases with sam-
ple duration [22], and attendant stream serves similar to a temporal
smoothing step to eliminate the need for Viterbi post-processing.

In duets, it is possible that the other instrument dominates the
audio for a time instant and occludes the target pitch. Thus, the large
window size of the attendant stream helps in focusing on the target
instrument in such conditions. By default, the attendant stream win-
dow size is 16384-samples, i.e., 1024 ms. We also report TAPE’s
performance on different attendant stream window sizes.

Transformer that we use here is a simple two-stage encoder-decoder
module that enables the information flow from the attendant stream
to the main stream through attention. We used two layers for both the
encoder and decoder of the transformer with sinusoidal positional
embeddings. We refer to Vaswani et al. [20] for details.

Fully-Connected (FC) is the final fully-connected layer to obtain
the output pitch activations. The transformer decoder output with a
shape of 512 × 4 is reshaped into 2048 × 1 and converted into 480
activations as shown in Figure 2. Instead of the final 360 activation
bins previously used in deep learning-based pitch estimators [6], we
use 480 bins that match the violin range and provide a higher fre-
quency precision: Our model predicts in the pitch range E3–E8,
with 12.5 cents between bin centers.

2.2. Timbre Awareness through Synthetic Audio Mixing

One main novelty of TAPE is its new training strategy based on syn-
thetic audio mixing. To our knowledge, synthetic mixing strategies
have not been adopted for pitch estimation or melody extraction.

While we create random mixes from single-source violin and
piano datasets similar to [23], what differentiates our methodology is
the different mixing parameters that we use to control and schedule
the signal-to-noise ratio (SNR) during training. The main dataset
we use for the training is the recently-introduced Violin Etudes [24],
which is a large-scale violin performance dataset collected from
teacher performances of the pedagogical violin repertoire. Violin
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Fig. 2. TAPE architecture. Input mix audio waveform is analyzed
with two convolutional streams and a transformer that provides the
information flow between them. The output is the violin pitch acti-
vations encompassing the pitch range E3–E8 with 480 bins.

Etudes comprises automatically extracted f0 labels, and the resyn-
thesized audio matching with the extracted f0 values. To ensure the
timbre awareness of the violin pitch tracker in violin-piano duets, we
apply an artificial mixing strategy using the Maestro v3 dataset [25],
which is one of the most extensive open-source piano datasets. We
use an 80 − 20% train–validation split on both of the datasets and
16384-sample audio waveforms with a sampling rate of 16 kHz.

Training Curriculum starts with training on clean violin tracks until
the Raw Pitch Accuracy (RPA50) reaches 90% on the clean valida-
tion data. Later, we start creating artificial mixes from random violin
and piano patches. In order to control the relative loudness of the vi-
olin and piano sounds during training, we fixed the root mean square
(RMS) amplitude of the violin signal and varied the RMS amplitude
of the piano signal according to SNR in dB as parameter:

SNR (dB) = 20 log10
RMSviolin

RMSpiano
(1)

To enhance the robustness of our model against different record-
ing conditions, we use a different SNR value for each sample in a
batch when mixing the violin and piano patches. Concisely, using a
batch size of 256, we generate 256 linearly-spaced SNR values be-
tween SNRmin and SNRmax, and apply them to the corresponding
samples in the batch. We set SNRmax to 60 dB throughout the train-
ing, which corresponds to the simplest monophonic scenario. On the
other hand, SNRmin is gradually decreased from 60 dB to −30 dB,
where the violin signal is barely audible. After this level, the training
continues in the linearly-spaced SNR range from −30 dB to 60 dB.

Aside from the above-mentioned method, we also experimented
with other curriculum strategies, such as constantly increasing the
SNR or random SNR per batch. However, we did not report the
results for the latter because they led to unstable training outcomes.

Other Training Details: We adopt the Binary Cross Entropy (BCE)
loss function as in [6] and minimize the BCE loss between the pre-
diction and the target vector that is smoothed by a Gaussian kernel
with a standard deviation of 15 cents. We train using Adam opti-
mizer with learning rate 10−5 and finish the training after one epoch
on the 45 million pitch samples of the Violin Etudes.

Note that we use different datasets for training and testing. We
train our network with artificial mixes, following [23] since random
mixes lead to acceptable source separation results when the training
datasets are big enough. Our test dataset comprises real violin–piano
duets, which we will explain in detail in the next section.



Fig. 3. Boxplots summarizing the Raw Pitch Accuracy (RPA50, %) under different input conditions on MusicNet violin–piano duets. Exper-
iments without MSS compared with six source separators (UMX-Rand, UMX-Wet, UMX-Ours, Spleeter-5, Spleeter-PC, and Spleeter-Ours).

3. EXPERIMENTS

We test TAPE on MusicNet [26] and MedleyDB [27] datasets, which
are disjoint to the training datasets, and compare its performance
with monophonic pitch trackers preceded by MSS algorithms. We
also investigate different MSS models and their impact on the subse-
quent pitch estimation task. For evaluation, we use the mir_eval2

implementation of Raw Pitch Accuracy (RPA), computed with two
thresholds: RPA50, the conventional threshold with 50-cent toler-
ance, and RPA5 fine-grained pitch accuracy metric, with 5-cent tol-
erance, for intonation analysis.

MusicNet [26] is a large-scale music transcription dataset with
automatically-generated MIDI alignments. We provide our test re-
sults on all the violin–piano duets from this dataset, i.e., 22 tracks
comprising Beethoven violin–piano sonatas of a duration of 180
minutes in total. To compute RPA50 from MIDI note numbers, we
convert aligned violin MIDI events to frame-level pitch values with
2 ms between frames, and report the results on the monophonic
passages played by the violin. RPA50 benchmarks reported for the
MusicNet are bounded by two types of inherent errors in the labels:
the alignment and the performer’s intonation errors. The authors of
MusicNet estimate the alignment errors to be around 8− 10%.

MedleyDB [27] is one of the most commonly-used benchmark
datasets in MIR with melody annotations. We report our experi-
ments on a violin–piano subset previously identified as leakage-free
by Chiu et al. [23]. Since we need violin pitch annotations, we cre-
ated an even smaller subset from the segments where a violin and a
piano are active, and the violin has a melody annotation. This small
subset corresponds to only 4 minutes. However, it enables testing
the robustness against different microphone placements thanks to the
availability of both violin and piano stems. Furthermore, since the
melody annotations are semi-automatically generated and corrected,
the annotations are reliable for studying RPA5, which is fine-grained
pitch accuracy and therefore is crucial in intonation analysis.

We use the following implementations for the baseline pitch es-
timators: CREPE [6] from its official repository3, PitchMelodia [10]
from Essentia4, and pYIN [3], YIN [2] and SWIPE [5] from libf05.
All the pitch trackers, except for CREPE, allow setting min and max
frequencies; we used frequency values that correspond to E3 (min)
E8 (max) to match with the violin range for a fair evaluation.

2https://craffel.github.io/mir_eval
3https://github.com/marl/crepe
4https://essentia.upf.edu
5https://github.com/groupmm/libf0

3.1. Music Source Separation (MSS) Baselines
Monophonic pitch estimators, by design, require single source stems
as the input. However, our application focuses on the pitch estima-
tion of violin in violin–piano duets. To have the relevant baselines,
we use four different pre-trained MSS models as a preprocessing
step for pitch estimation. Furthermore, we train two well-known
MSS models on the same datasets as TAPE for a fair comparison.
To this end, we adopt spectral-based MSS models, which learn to
approximate the magnitude spectrogram of a target source and re-
construct the separated audio signals through soft masking or multi-
channel Wiener filtering [28].

As a starting point, we run the violin pitch estimators using the
violin–piano duets without MSS, i.e., without an explicit source sep-
aration step. As our first MSS baselines, we choose the pre-trained
violin–piano MSS models by Chiu et al. [23] based on the BLSTM-
based OpenUnMix [29]. We denote the pre-trained model trained
with random mixes as UMX-Rand and the one trained using addi-
tional pink noise for data augmentation as UMX-Wet. For further de-
tails regarding the training strategies of the models, we refer to [23].

As a second MSS baseline, we consider the 5-stem Spleeter
model [30] (Spleeter-5), which addresses the separation of piano,
vocals, bass, drums, and other for popular music recordings. Com-
bining the resulting non-piano magnitude spectrograms, we use the
pre-trained model as a binary source separator, as in [23].

Third, we use the Spleeter-based pre-trained model by Özer and
Müller [31] (Spleeter-PC), which focuses on splitting piano concerto
recordings into piano as the lead instrument, and orchestra as the
accompaniment. We regard the resulting separated orchestra as solo
violin, which is feasible regarding the high inclusion of strings in the
orchestral works used for the training of Spleeter-PC.

Fourth, we train UMX- and Spleeter-based models using the
same datasets as TAPE, i.e., artificial random mixes from Violin
Etudes [24] and Maestro v3 [25]. We denote these models as UMX-
Ours and Spleeter-Ours.

Figure 3 illustrates the violin pitch estimation performances un-
der different input conditions. First, we observe that using MSS as
a preprocessing step enhances the performance of the monophonic
pitch estimators as expected, whereas TAPE exhibits its best per-
formance without an explicit MSS step. Among the MSS models,
Spleeter-Ours yields the best MSS performance for the downstream
task of violin pitch estimation. We also see that the deep-learning-
based CREPE performs better than the traditional pitch estimators
under most settings. Yet, among all the pitch estimators, TAPE per-
forms the best under each setting and preserves its robustness despite
the artifacts arising from non-optimal MSS results.
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Fig. 4. Plots comparing (a) RPA50 and (b) RPA5 results on Med-
leyDB violin–piano duets. SNR values in the horizontal axis are
obtained by mixing violin–piano stems with different gains to study
microphone positioning. CREPE, pYIN, YIN, Melodia, and SWIPE
are preceded by the best-performing MSS model Spleeter-Ours,
whereas TAPE receives the violin–piano mixes directly.

3.2. Effect of Microphone Position

In real-life recordings, obtaining a perfect sound balance is a chal-
lenging task. Thus, any performance analyzer that works on au-
dio mixtures should strive for invariance to different microphone
placements. In this work, we study the robustness to diverse micro-
phone positioning by mixing violin–piano stems from MedleyDB
with varying gains. After calculating the RMS energy of violin and
piano, we mix them at different ratios that correspond to the SNR
values seen in Figure 4. The results using the conventional RPA50
metric indicate that, when the violin is predominant, the two-stage
procedure of MSS and pitch estimation performs as well as TAPE
on raw input mixture. However, when the piano is louder than the
violin, TAPE significantly outperforms the two-stage methods. Fur-
thermore, results using RPA5 demonstrate that the TAPE estimates
are more precise across all mixing ratios and microphone positions.

3.3. Results

Table 1 provides the comparison of TAPE with the state-of-the-art
pitch estimators in the literature. Here, we show the MedleyDB
results on the perfect microphone placement scenario, i.e., equal
violin–piano energy corresponding to SNR = 0 (see Figure 4). For
a fair evaluation, we use the monophonic pitch estimators preceded
by the best-performing MSS model (Spleeter-Ours) to provide a sep-
arated violin signal. The results show that the TAPE on raw mix
waveform outperforms the two-stage methods across all evaluation
metrics. TAPE yields an RPA50 result of 75.9%, whereas the sec-
ond best pitch estimator, CREPE after Spleeter-Ours, results in a
significantly lower RPA50 of 64.9% for the subset from MusicNet.
For MedleyDB, all the methods achieve higher pitch estimation re-

MusicNet MedleyDB
RPA50 RPA50 RPA5

TAPE on mix 75.9 90.8 70.2
CREPE after MSS 64.9 90.4 54.8

pYIN after MSS 62.1 88.6 52.2
YIN after MSS 60.7 87.6 62.9

Melodia after MSS 53.2 74.2 49.8
SWIPE after MSS 60.0 87.8 49.1

Table 1. Violin Raw Pitch Accuracy (RPA, %) results on violin–
piano duets from MusicNet (180 min) and MedleyDB (4 min).
CREPE, pYIN, YIN, Melodia, and SWIPE are preceded by the best-
performing MSS model Spleeter-Ours whereas TAPE receives the
violin–piano audio directly as the input.

Attendant Stream MusicNet MedleyDB
window size (ms) RPA50 RPA50 RPA5

64 73.8 87.7 67.8
128 74.1 88.1 68.2
256 75.4 89.6 69.0
512 75.6 90.8 69.9

1024 75.9 90.8 70.2
2048 78.6 92.4 71.3

Table 2. Effect of TAPE attendant stream window size on Raw Pitch
Accuracy, in %, for violin pitch estimation in violin–piano duets.

sults. For example, TAPE yields an RPA50 of 90.8% and an RPA5
of 70.2%, whereas the second best model CREPE after MSS leads
to an RPA50 of 90.4% and an RPA5 of 54.8%. Note that, as shown
by the RPA5 values, TAPE yields more precise pitch estimates than
the other methods. Thus, it is more suitable for intonation analysis.

In Table 2, we study the effect of TAPE’s attendant stream win-
dow size on violin pitch estimation in duets. With the same model
weights, enlarging the attendant stream window to 2048 ms through
dilations at inference time yields an RPA50 of 78.6% on MusicNet,
and an RPA50 of 92.4% and RPA5 of 71.3% on MedleyDB. Results
indicate that the performance of the pitch detection can be substan-
tially improved with larger attendant stream windows.

4. CONCLUSION

In this work, we explored pitch estimation of target sources in multi-
instrument music, in particular, violin pitch estimation for violin–
piano duets. We introduced a violin timbre-aware pitch estimator
(TAPE) which was trained on single-instrument datasets using a new
synthetic mixing strategy. We showed that our proposed TAPE out-
performed the conventional pipeline of source separation and pitch
estimation in real-life violin–piano duets. We believe that the timbre-
aware pitch estimation is an important step towards end-to-end mu-
sic performance analysis for accompanied instruments.
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