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ABSTRACT

Self-supervised pre-training of a speech foundation model, followed
by supervised fine-tuning, has shown impressive quality improve-
ments on automatic speech recognition (ASR) tasks. Fine-tuning
separate foundation models for many downstream tasks are expen-
sive since the foundation model is usually very big. Parameter-
efficient fine-tuning methods (e.g. adapter, sparse update methods)
offer an alternative paradigm where a small set of parameters are up-
dated to adapt the foundation model to new tasks. However, these
methods still suffer from a high computational memory cost and
slow training speed because they require backpropagation through
the entire neural network at each step. In the paper, we analyze the
performance of features at different layers of a foundation model on
the speech recognition task and propose a novel hierarchical feature
fusion method for resource-efficient transfer learning from speech
foundation models. Experimental results show that the proposed
method can achieve better performance on speech recognition task
than existing algorithms with fewer number of trainable parame-
ters, less computational memory cost and faster training speed. Af-
ter combining with Adapters at all layers, the proposed method can
achieve the same performance as fine-tuning the whole model with
97% fewer trainable encoder parameters and 53% faster training
speed.

Index Terms— speech recognition, foundation model, transfer
learning

1. INTRODUCTION

A foundation model [1] is usually a big model trained on broad data
(generally using self-supervision at scale) that can be fine-tuned to
a wide range of downstream tasks and has aroused extensive atten-
tion due to its impressive quality improvements and emergent ca-
pabilities [2, 3, 4, 5]. In speech community, self-supervised pre-
training speech foundation models on a large amount of unsuper-
vised speech has shown impressive quality improvements on vari-
ous speech recognition tasks [6, 7]. There are two main categories
of speech self-supervised learning algorithms. One direction is to
reconstruct (APC [8], MPC [9]) or predict (Wav2vec [10, 11, 12])
the input feature directly. The other direction is building a BERT-
style self-supervised learning model by bridging the gap between
continuous speech signal and discrete text tokens, such as Wav2vec
2.0 [13], HuBERT [14], w2v-BERT [15] and BEST-RQ [16]. After
pre-training the speech foundation model using the self-supervised
loss, we initialize the encoder of the downstream task using the pre-
trained model and fine-tune it on the supervised data.

A large general-purpose foundation model with millions or even
billions of parameters can be adapted to many downstream tasks.
However, it is challenging to perform separate adaptations for many

tasks efficiently with only a small amount of supervised data each
task. There have been existing works investigating to reduce the
number of parameters required for fine-tuning the foundation model.
BitFit [17] proposes a sparse-finetuning method where only the bias
terms of the foundation model are updated. Houlsby et al. [18]
propose to insert Adapter modules between the layers in the fixed
pre-trained model and each module is a small trainable feed-forward
neural network. Other works [19, 20] reduce the number of param-
eters further by exploiting a low-rank approximation of the Adapter.
Although these parameter-efficient methods achieve decent perfor-
mance on the downstream task with a significant reduction in the
trainable parameters, their required computational memory cost and
training time are still very high because of the following two reasons:
1) using the output of the highest layer in the foundation model only
for downstream tasks, which leads to the inefficiency of the feature
usage and requires to update the foundation model to adapt it to the
downstream tasks; 2) adding/updating sparse parameters in the foun-
dation model, which requires a full backpropagation process from
the top to the bottom of the network to compute the gradients of
the trainable parameters. Thus, a resource-efficient transfer learn-
ing method, which can achieve comparable performance with small
number of trainable parameters, low computational memory cost and
fast training speed, is required for efficient adaptation of the founda-
tion model to many downstream tasks.

Recently, Pasad et al. [21] analyze the layer-wise features of
a self-supervised (wav2vec2.0) pre-trained speech representation
model and finds that the middle layers encode the most contextual
and high-level information. The bottom or top few layers, on the
other hand, focus on the lower-level information and encode more
local representations. Arunkumar et al. [22] investigate the ensem-
ble features of self-supervised pre-trained models for ASR and finds
that features from different self-supervised learning methods are
complementary and the ensemble of features is beneficial for the
downstream speech recognition tasks. Although behaviors of the
layer-wise features and features from multiple self-supervised pre-
trained models are explored, neither of them consider the resource
efficiency in the fine-tuning stage and there is no investigation about
the feature fusion of layer-wise features from a single pre-trained
model on downstream tasks.

In this paper, we propose a novel resource-efficient transfer
learning method for speech foundation models. specifically, we
treat the foundation model as a frozen feature extractor and fuse the
multi-level features from the foundation model hierarchically. We
conduct extensive experiments to investigate different ways of fea-
ture fusion for the foundation model. Experimental results show that
the proposed method can achieve better performance on the ASR
task than existing parameter-efficient fine-tuning algorithms with
fewer number of trainable parameters, less computational memory
cost and faster training speed. After combining with Adapters at
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Fig. 1: Voice Search WER when extracting features from different
layers of the foundation model.

all layers, the proposed method can achieve the same performance
as fine-tuning the whole model with 97% fewer trainable encoder
parameters and 53% faster training speed.

2. EXPERIMENTAL SETUP

2.1. Foundation Model And Task

The foundation model used in the paper is a 2-layer convolutional
network followed by a 24-layer conformer encoder with hidden di-
mension 1024 and about 600M parameters in total. Each conformer
layer [23] is a convolution-augmented transformer network, which
consists of attention, feed-forward and convolutional modules. The
model input is a vector of size 128 logMel features and SpecAug-
ment [24] is also applied to increase model robustness. We pre-train
the 600M conformer encoder using the BEST-RQ [16] algorithm for
800K steps. For the downstream speech recognition task, we initial-
ize the encoder using the pre-trained speech foundation model and
the output of the encoder is used as input to an RNN-T [6] along with
a 6-layer LSTM decoder and dimension 768. We train with Adam
optimizer for both pre-training and fine-tuning, and use exponen-
tial moving averaging (EMA) with decay rate 0.9999 for fine-tuning
only. We update the trainable encoder parameters and LSTM de-
coder which has 124M trainable parameters on Voice Search data
for 100K steps. If not described explicitly, the parameter efficiency
refers to the reduction of the trainable parameters in the encoder
only. All experiments are performed on TPUs.

2.2. Training Data

We use two sources of training data in this work. Following [6], we
collect 800K hours unsupervised English Youtube data and pre-train
the 600M foundation model on the randomly segmented audio-only
Youtube speech using the BEST-RQ algorithm [16]. In addition,
the supervised English Voice Search (VS) data contains 5K hours
of labeled voice search audio [25] and is used to fine-tune the con-
former encoder and RNNT-T decoder for the ASR task. All data
are collected and deidentified in accordance with Google AI princi-
ples [26].

2.3. Evaluation

In this paper, we calculate the word error rate (WER) on the Voice
Search (VS) test dataset to measure the quality of the model on the

Fig. 2: Linear feature fusion from multiple layers of the foundation
model, using a 6-layer conformer encoder as an example.

downstream speech recognition task. Apart from WER, we compare
the number of trainable parameters, computational memory cost and
training speed at the same time for resource efficiency. The target of
this paper is to propose a method, which can achieve low WER with
small number of trainable parameters, low computational memory
cost and fast training speed.

3. LINEAR FEATURE FUSION OF THE FOUNDATION
MODEL

Previous parameter-efficient fine-tuning methods update the sparse
parameters in the foundation model and use the output of the high-
est encoder layer only as the input to the RNN-T decoder, while
the outputs of the intermediate layers are dropped after the forward
pass. The proposed feature fusion method treat the foundation model
as a frozen feature extractor and fuse the multi-level features from
different layers linearly or hierarchically. Because there is no need
to perform backward pass in the foundation model and only a few
parameters are added on top of the outputs of the intermediate lay-
ers, the proposed feature fusion method is parameter-efficient and
computation-efficient.

3.1. Performance of Single Layer Features

To study the performance of the features from different layers of the
foundation model, we extract outputs from layers
{1, 3, 5, 10, 12, 14, 19, 21, 23} respectively and update the 124M 6-
layer LSTM decoder only on the Voice Search data. Figure 1 shows
the WER of the corresponding layers and results present that mod-
els using features from middle layers perform better on the speech
recognition task than features from bottom or top layers. This ob-
servation is consistent with [21] that middle layers encode more
contextual and high-level information which is more helpful for the
speech recognition task than bottom or top layers.

3.2. Linear Feature Fusion From Multiple Layers

From Section 3.1, we know that features from different layers show
different performance on the downstream speech recognition task.
To investigate whether these features are complementary, we pro-
pose a linear feature fusion method and combine features from dif-
ferent layers linearly. As in Figure 2, we firstly concatenate the fea-
tures from multiple layers and project the concatenated feature to the



Fig. 3: Balanced and unbalanced hierarchical feature fusion methods of the foundation model, using 6-layer conformer encoder as an
example. FP denotes a 1-layer fully-connected network.

required dimension using a fully-connected neural network. The de-
coder receives the output of the projector as input. All the conformer
layers in the encoder are fixed while we update feature projector and
decoder only using the RNN-T loss.

Table 1: Fusing features from multiple layers of the foundation
model. Feature projector is a 1-layer fully-connected network for
all combinations.

Layer index # Parameters VS WER
In Feature Projector (%)

11 0.6 M 11.2

23 0.6 M 91.9

11, 23 1.3 M 10.8

5, 11, 17, 23 2.6 M 9.3

2, 5, 8, 11, 14 5.2 M 8.1
17, 20, 23

1, 3, 5, 7, 9, 11, 13 7.9 M 8.0
15, 17, 19, 21, 23

Fig. 4: `2 norm of the learned weight of each layer when fusing
features from 12 layers.

We compare the Voice Search (VS) WER when fusing features
from {1, 2, 4, 8, 12} layers. Results in Table 1 demonstrate the bene-
fit of feature fusion from multiple layers. When fusing features from
12 layers, we obtain the best VS WER 8.0% with additional 7.9M
parameters in the feature projector. Figure 4 shows the norm of the
learned weights for each layer when fusing 12 features. The figure
presents a higher weight for the middle layers and a lower weight for
bottom or top layers. The results demonstrate that features from mid-
dle layers contribute more to the speech recognition task and adding
features from bottom or top layers is also helpful.

3.3. Increasing Depth of The Feature Projector

We also explore to learn non-linear feature fusion by increasing the
depth of the feature projector in Figure 2. In Table 2, we increase the
depth of the fully-connected network from 1 to 4 layers with ReLU
activation while extracting features from the same 12 layers used in
the previous experiments, which was found to give the best results.
Experimental results show that the model gets a better WER with
a deeper feature projector and the VS WER becomes saturated at
about 7.4% after adding up to 3 fully-connected layers.

Table 2: Increasing depth of the feature projector. Fusing features
from 12 layers as it gives the best results.

# Layers # Parameters VS WER
In Feature Projector (%)

1 7.9 M 8.0

2 8.3 M 7.5

3 8.7 M 7.4

4 9.1 M 7.4

4. HIERARCHICAL FEATURE FUSION OF THE
FOUNDATION MODEL

Knowing that features from different layers encode different levels
of information, we also explore to fuse features in a hierarchical way
rather than linearly. In this section, we propose a hierarchical feature
fusion method and compare it with other parameter-efficient fine-
tuning algorithms.

4.1. Hierarchical Feature Fusion From Multiple Layers

As in Figure 3, we compare two hierarchical feature fusion methods
(balanced and unbalanced) for the speech foundation model. For the
balanced feature fusion method (HFF-b), we project and concatenate
the neighboring pair-wise features, treating all layers equally. For the
unbalanced feature fusion method (HFF-ub), on the other hand, we
project and concatenate the neighboring features from bottom to the
middle and from top to the middle. The intuition is that the middle
layers encode high-level information while the bottom or top layers



Table 3: Comparison with baselines and prameter-efficient methods. ↓ denotes the smaller the better. Second column shows the number of
trainable parameters in the encoder only for the corresponding compared method and the whole 124M LSTM decoder are trainable as well.

Methods # Trainable Computational Training Speed VS WER
Encoder Params ↓ Memory Cost ↓ Examples/Sec ↑ (%) ↓

Fine-tune all 606.6 M 13567 MB 1270 5.5

Fine-tune the highest encoder layer (FTHS) 25.4 M 7563 MB 3616 15.8

BitFit 0.1 M 12443 MB 2824 6.5

Adapter(d=128) at all layers 6.4 M 12411 MB 2810 6.4

Adapter(d=256) at all layers 13.3 M 12455 MB 2802 6.1

Adapter(d=512) at all layers 25.9 M 12486 MB 2788 6.1

Adapter(d=128) at layers
{13, 15, 17, 19, 21, 23} 2.3 M 9340 MB 3251 7.9

Linear Feature Fusion 8.7 M 7573 MB 3610 7.4

HFF-b 12.3 M 7648 MB 3655 7.0

HFF-b + Adapter(d=128) at layers
{13, 15, 17, 19, 21, 23} 13.9 M 9653 MB 3213 6.0

HFF-b + Adapter(d=128) at all layers 18.6 M 12378 MB 2750 5.5

encode low-level information, such that more encoding is required
for the features from these layers.

Table 4: Comparison between balanced and unbalanced hierarchi-
cal feature fusion methods. Fusing features from 12 layers.

Methods # Parameters VS WER
In Feature Projector

HFF-b 12.3 M 7.0

HFF-ub 12.3 M 7.2

We use a 1-layer fully-connected network as FP in Figure 3 and
the projector in the “Concat & Project” is a 3-layer fully-connected
network. The FP projects a 1024-d feature to 512-d, such that the
feature dimension remains unchanged after concatenation. Table 4
shows that both methods achieve better VS WER than linear feature
fusion, and HFF-b performs better than the HFF-ub on the speech
recognition task with the same amount of parameters in the feature
projector. Therefore, we use balanced hierarchical feature fusion
(HFF-b) in the following experiments.

4.2. Comparison with Parameter-Efficient Fine-Tuning Meth-
ods

To validate the proposed hierarchical feature fusion method, we
compare it to several related algorithms. Specifically, we compare
with two representative and strong parameter-efficient methods:
BitFit [27] and Adapter [18]. Each adapter module is inserted
after each conformer encoder layer and is a randomly initialized
2-layer feed-forward network with the bottleneck dimension d from
{128, 256, 512}. We also fine-tune the highest conformer en-
coder layer (FTHST) as a baseline, which is computation-efficient
because no backpropagation is required for the lower encoder lay-
ers. The parameter-efficient methods are applied to fine-tune the
600M conformer encoder only, and the whole randomly initialized

124M LSTM decoder is also updated simultaneously. Because
the LSTM decoders are the same for all compared methods, we
only compare the number of trainable encoder parameters in the
experiments regarding parameter efficiency. Although the best VS
WER can be achieved if we fine-tune all parameters of the model,
it costs too much computational memory 13567MB and the train-
ing speed is very slow at 1270 examples/sec. Results in Table 3
show that Adapter’s performance is better than BitFit or FTHS,
but gets stuck at 6.1 VS WER even if increasing the bottleneck
dimension from 128 to 512. However, the Adapter(d=128) at all
layers’s training speed is 22% slower and computational memory
cost is 64% higher than FTHS. With a very similar computational
memory cost and training speed to FTHS, HFF-b can improve VS
WER from 15.8% to 7.0%. Comparing with Adapter(d=128) at
layers {13, 15, 17, 19, 21, 23}, HFF-b achieves better VS WER
with 12% faster training speed and 18% lower computation mem-
ory cost. Combining the HFF-b with Adapter(d=128) at layers
{13, 15, 17, 19, 21, 23}, we can achieve better VS WER 6.0%
than all compared parameter-efficient methods with fewer num-
ber of trainable parameters, less computational memory cost and
faster training speed. If combining the proposed HFF-b with
Adapter(d = 128) at all layers, we can achieve the same WER
as fine-tuning all parameters of the RNN-T model with 97% fewer
trainable encoder parameters and 53% faster training speed.

5. CONCLUSION

In this paper, we analyze the behavior of features from different
layers of the foundation model for speech recognition task and
propose a hierarchical feature fusion method for resource-efficient
transfer learning from the speech foundation model. Extensive re-
sults demonstrate that it achieves promising performance on the
speech recognition task with fewer trainable encoder parameters,
less computational cost and faster training speed.
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