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ABSTRACT

There is an imminent need for guidelines and standard test

sets to allow direct and fair comparisons of speech emotion

recognition (SER). While resources, such as the Interactive

Emotional Dyadic Motion Capture (IEMOCAP) database,

have emerged as widely-adopted reference corpora for re-

searchers to develop and test models for SER, published work

reveals a wide range of assumptions and variety in its use that

challenge reproducibility and generalization. Based on a crit-

ical review of the latest advances in SER using IEMOCAP

as the use case, our work aims at two contributions: First,

using an analysis of the recent literature, including assump-

tions made and metrics used therein, we provide a set of SER

evaluation guidelines. Second, using recent publications with

open-sourced implementations, we focus on reproducibility

assessment in SER.

Index Terms— Speech Emotion Recognition, emotion

evaluation, reproducibility, IEMOCAP

1. INTRODUCTION

Systems with the ability to recognize emotions, simply by

processing speech information can be particularly useful for

building intelligent machines that can incorporate perceived

affective expressions. Inferring expressed human affective

state can, for instance, help a voice assistant to adjust its re-

sponse to the user. Speech Emotion Recognition (SER) falls

within a broad class of problems within computational par-

alinguistics [1].

As is typical in such speech machine-learning applica-

tions, the cornerstone of progress is the use of annotated

datasets. These resources enable us to build and evaluate the

performance of systems that learn how to map successfully

an input speech sample to the desired output. Collecting

appropriate input-label pairs for the SER task is a highly

ambiguous procedure. The ambiguity lies on the fact that

the quality of labels depends on the annotators’ nuanced

perception of emotions. Besides that, there is an inherent

trade-off between data quality and the desire to facilitate an-

notation when gathering emotional speech. Spontaneously

spoken segments, for example, can be of high (audio) quality

but may contain overlapping and or ambiguous affective ex-

pressions which can confuse annotators and exacerbates the

difficulty of labelling such data [2]. On the other hand, im-

posing a one-to-one correspondence between a certain speech

segment and its emotion may give rise to overly artificial data

samples for learning and inference.

Several published studies in the SER domain have used

the Interactive Emotional Dyadic Motion Capture (IEMO-

CAP) [3] database. Using a critical review of the recent works

using IEMOCAP for SER as use cases, this work aims to in-

vestigate questions centered on how the adopted evaluation

approaches compare across the studies, and how guidelines

for comparable evaluation and reproducible findings can be

developed. Our contributions are summarized as follows:

• Using a critical review of past studies, we identify three

methodological limitations in the adopted evaluation

methods. Our analysis reveals that the lack of con-

sensus about the evaluation protocol leads to results of

narrowed range which can not be properly contextual-

ized and generalized across related work in the domain.

Based on these insights, we summarize a recommended

set of evaluation guidelines (building on practice from

several previous works), with the end goal of minimiz-

ing potential blind spots related to the overall SER pro-

cedure.

• We also report a reproducibility study, assessing whether

models which provide opensource code implementa-

tions deliver results consistent with the published find-

ings.

2. RELATED WORK

Deep Learning approaches have triggered a paradigm shift

including speech emotion recognition (SER) research and de-

velopment. Systems that solve SER have largely transitioned
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from classical machine learning models, such as HMMs or

SVMs, applied on top of hand engineered features to end-to-

end learning of Deep Neural Networks (DNNs).

In designing deep-learning SER systems, the practitioner

faces a series of important choices. The first relates to the way

that speech information is represented, e.g., using MFCCs,

spectrograms or other acoustic features. Then, it is crucial to

identify a suitable architecture that will encode this informa-

tion efficiently, with the most natural candidates being CNNs

[4, 5, 6], LSTMs [7, 8], or even a combination [9, 10] of these.

Relatedly, Self-Supervised Learning (SSL) features have

received a mounting interest in the last years. There is a flurry

of works exploring the prospect of using wav2vec [11, 12] or

HuBERT [13] features in emotion recognition [14, 15, 16, 17,

18]. On a similar vein, Conformer Applied to Paralinguis-

tics (CAP) [19] are representations based on the Conformer

[20] architecture, trained similarly to the wav2vec-2.0 (w2v2)

model, with their downstream performance being evaluated

on the Non-Semantic Speech Benchmark (NOSS) [21]. In

[22], authors have distilled the efficient CAP representations

to more lightweight architectures, aiming to significantly re-

duce memory and compute overheads, while sacrificing the

downstream performance only slightly.

On a different note, it is critical to associate our work with

prior publications, such that of Musgrave et al. [23], that aim

to increase awareness about methodological flaws found in

ML papers. Such works contribute in improving the exper-

imental rigor of the field, and play a key role in realizing

the potential limitations related to the reported results of each

method.

3. REVISITING IEMOCAP

3.1. Dataset Details

The IEMOCAP [3] database consists of five dyadic inter-

actions sessions, each between a unique male and female

speaker per session, amounting to a total of 10 speakers. The

conversation of each session is segmented based on speaker

turns, and these conversational segments are annotated for

perceived expressed emotions. Each segment is labelled by 3

different annotators, where they assigned both a discrete cat-

egorical label (e.g. happy, neutral, sad etc.) and a continuous

valued one, assessing the valence, dominance and activation

dimensions. Additionally, the conversations are a blend of

both scripted and improvised speech interactions.

Although the diversity of label information present in this

database enables the study of SER from multiple aspects, our

focus in this paper is on the most prevalent setting found

across literature. In this setting, SER is tackled as a 4-way

classification problem, discarding all conversational segments

whose discrete labels are not included in the following set

{neutral, happy, sad, angry, excited}. Then, due to their

expressive closeness, the happy and excited label classes are

merged. This process leads to a dataset of N = 5531 sam-

ples, with a distribution of {1708, 1636, 1103, 1084} exam-

ples for the {neutral, happy, sad, angry} classes, respectively.

After the filtering procedure, the dataset ends up with audio

segments of average duration of ∼ 4.5 seconds, leading to 7

hours of speech data, coming from 10 different speakers.

The resulting dataset comes with two major challenges:

First, it contains a limited amount of speech, compared to

other datasets used in SER e.g., MSP-Podcast [24] amounts

to 27 hours. Second, the empirical label distribution is im-

balanced, with most samples originating from the neutral and

happy classes. Both of these challenges affect machine learn-

ing methods in various ways; the former means that models

of increased capacity suffer from overfitting which should be

treated by strong regularization, e.g., with multitask learn-

ing [9, 18, 15]. Failing to properly address the latter issue

will probably introduce unsolicited biases to the system’s

outputs. Recent works propose elaborate data augmentation

techniques [25, 26] or the use of different losses, e.g., the

focal loss in the case of Aftab et al. [4], to combat imbalance.

3.2. Evaluation Protocol

In this section, we highlight the three main assumptions typi-

cally made by researchers during the evaluation of their SER

models. This leads to a vast amount of distinct evaluation

protocols, with final results that cannot be compared easily

or fairly with previous methods in the literature. After that,

we present a set of a evaluation guidelines, hoping to disam-

biguate the evaluation process and mitigate the errors made

therein.

3.2.1. Speaker Dependent Evaluations

In speech related applications with multiple speakers, it is cru-

cial to guarantee that the speakers on test data are not present

in the training set. Otherwise, the system may deceptively ap-

pear to be highly performing, whereas in reality it may be the

case that it only learns to exploit spurious correlations in an

optimal way. For this reason, the evaluation procedure should

adhere to the property of Speaker Independence (SI).

An important challenge associated with IEMOCAP is

that it lacks an established nominal test set; hence, in each

work researchers are left with some freedom on how to carry

out evaluation. There are two prevalent ways to perform

SI evaluations on IEMOCAP: (1) 5-fold cross validation (or

leave-one-session-out), where in each turn four sessions (with

eight speakers) are used as training data and one session (with

two speakers) as test data and (2) 10-fold cross validation (or

leave-one-speaker-out), where one speaker is kept for test and

the other nine for training set. Usually, two speakers are pre-

served for validation set purposes in 5-fold cross-validation

(one speaker for the 10-fold case). The per-fold accuracy

metrics are aggregated through the Weighted Accuracy (WA)

and Unweighted Accuracy (UA) metrics. The WA measures



# Publication Code Acoustic Feats UA (%) WA (%) cross-val Comments on Eval.

1 Feng et al. [8] Yes MFCCs 76.4 75.5 5-fold -

2 Zhu and Li [5] Yes MFCCs 73.90 73.70 5-fold Excited as Happy

3 Xu et al. [27] Yes Spectrograms 67.94 67.28 5-fold Excited as Happy

4 Gat et al. [15] No HuBERT - 81.0 5-fold -

5
Wang et al. [14] Yes

HuBERT - 79.58
5-fold

-

6 w2v2 - 77.47 -

7 Peng et al. [28] No MFCCs 79.1 78.0 10-fold -

8 Xu et al. [6] Yes Spectrograms 77.54 79.34 5-fold Improv. only, Exc. as Hap.

9 Xu et al. [27] Yes Spectrograms 76.36 (63.92) 76.18 (65.90) 5-fold Improv. (Scripted) only, Exc. as Hap.

10 Zhu and Li [5] Yes MFCCs 79.25 (70.39) 81.18 (71.44) 5-fold Improv. (Scripted) only, Exc. as Hap.

11 Liu and Wang [29] No MFCCs 78.30 79.52 5-fold Improv. only

12 Moine et al. [30] No Spectrograms 77.22 - 5-fold Improv. only

Table 1: Comparison of methods that perform Speaker Dependent (SD) evaluation. Rows 8-12 perform random 5-fold cross

val. only on the improvised data.

# Publication Code Acoustic Feats UA (%) WA (%) cross-val

1 Pepino et al. [16] Yes w2v2 67.2 - 5-fold

2 Yang et al. [17] Yes HuBERT 67.62 - 5-fold

3 Gat et al. [15] No HuBERT - 74.2 5-fold

4 Santoso et al. [7] No MFCC+CQT+F0 75.9 76.1 5-fold

5 Li et al. [9] No Spectrograms 82.8 81.6 5-fold

6
Zou et al. [10] Yes MFCCs,Spec,w2v2

71.05 69.80 5-fold

7 72.70 71.64 10-fold

8
Wang et al. [14] Yes

HuBERT - 73.01
10-fold

9 w2v2 - 70.99

10 Aftab et al. [4] Yes MFCCs 70.76 70.23 10-fold

11 Feng et al. [8] Yes MFCCs 69.67 68.63 10-fold

12 Cai et al. [18] Yes w2v2 - 78.15 10-fold

13 Shor et al. [19] No CAP - 79.2 Session 05

14 Shor and Venugopalan [22] Yes † TRILLSSON - 73.2 Session 05

Table 2: Comparison of methods that perform Speaker Independent (SI) evaluation. The papers of rows 13,14 use only

Session05 (i.e. speakers ’05M’ and ’05F’) as test set. (†): They only provide the trained weights of the feature extractors.

the percentage of correct predictions, whereas UA averages

the recall metric for each class.

Intriguingly, the necessity of performing SI evaluation

is yet to become clear in the community, since many recent

works randomly create the train-val-test split with overlap-

ping speaker identities. This, in contrast to SI, is called

Speaker Dependent (SD) evaluation. Besides the obvious

violation of speaker independence, the random split limits the

possibility of comparisons only to the very specific baselines

used in the respective works, and limits generalization.

3.2.2. Evaluation on Improvised Interaction Data

In our previous analysis, we mentioned that IEMOCAP con-

tains speech from both improvised and scripted interactions.

Another common evaluation trend is to assess performance

on only one of these two components. This frequently hap-

pens with the improvised component, e.g., [30, 6]. While this

choice may be linked with the unique goals of each paper, it

should be noted that this practice may again impose limits on

our ability to contextualize results with other published meth-

ods. A desirable solution to this challenge would be to per-

form – and make available – evaluation on both improvised

and scripted data, and report results about each data part sep-

arately.

3.2.3. The ‘excitement’ class case

Here, we discuss another widely-adopted choice which leads

to the existence of a new evaluation branch that limits broad

comparisons. There are some early works [31, 32] which only

consider the {neutral, sad, angry, excited} classes, excluding

the happy class from their study (instead of merging it with

the excited class). This, in turn, had prompted some subse-

quent papers [27, 6, 5] to conduct evaluation following this

protocol. Similarly with the two aforementioned evaluation

challenges, we believe that researchers should follow the con-

vention of including the merged happy and excited classes,

and then include comparisons with specific baselines that, for

example, use only the excited class.

https://github.com/Kyoto-University-Speech-and-Audio/feng-asr-ser
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3.2.4. Comparing literature results

We collect the reported results of multiple recent SER meth-

ods developed on the IEMOCAP database. In Tables 1 and 2,

we demonstrate the reported performance metrics for works

that use SD and SI evaluations, respectively. We also include

additional information, e.g., how the speech signal is repre-

sented in each work, whether the respective paper has an of-

ficial implementation or any other choices followed during

evaluation. In the SD case, the results cannot be compared

fairly since data are split randomly (except the case that some

work evaluates other methods in the exact same partition ap-

proach, e.g., [5] outperforms [27, 6]). Overall, it becomes ev-

ident that diverging from (and absent) a common evaluation

setting can result in an unclear situation and confusion about

where each method stands within the published literature, and

can impede progress as a community.

3.3. Recommended evaluation guidelines

Our proposal for future work on SER using IEMOCAP is to

perform evaluations according to the following protocol to en-

sure a common minimally-viable and comparable baseline:

• Use neutral, sad, angry and happy+excited classes,

leading to a dataset of N = 5531 samples,

• Perform a 10-fold Speaker Independent cross-validation

with one speaker as test, eight as training and one as

validation set,

After reporting the results following this set up, researchers

may deviate as they wish, e.g., with reporting results on the

improvised part of IEMOCAP or other label subsets/merges.

Numerous methods [10, 14, 4, 18] have been evaluated ac-

cording to this setting. For the number of folds during cross-

validation, we remark that both 5-fold and 10-fold evaluations

are equally reasonable choices, with the latter case using more

training data per fold, hence leading to slightly higher WA and

UA metrics.

4. EXPERIMENTS TO EXAMINE

REPRODUCIBILITY

In this section, we conduct a reproducibility study on papers

that had open-sourced their implementations. Our goal is to

evaluate each method (whose implementation is public) from

Tables 1 and 2 according to the evaluation guidelines of 3.3.

First, we remark that, despite uploading their code, the

majority of researchers omit to include checkpoints of the

trained models. Notably, only two of the examined works [18,

22] share trained weights, which makes the reproduciblity

process much easier. However, the authors of [22] only share

the weights of the backbone, so one has to extract the train-

val-test embeddings and train a linear layer on top of them to

reproduce results. Feng et al. [8] have uploaded a codebase

that produced errors during execution, so we could not pro-

ceed further. Aftab et al. [4] already evaluate using the recom-

mended guidelines, and we confirm that their reported results

are reproducible, after retraining their model from scratch.

Similarly, while both Zou et al. [10] and Wang et al. [14] do

not share checkpoints, training from scratch confirms their re-

ported results. We did not check the reproduciblity of Yang

et al. [17] and Pepino et al. [16], since their works are nearly

identical with [14].

Next, we turn our attention to the works of Table 1. Zhu

and Li [5] propose the GLAM architecture, but their public

code does not include checkpoints. Training from scratch, ac-

cording to their protocol (i.e., drop the happy class’ samples)

yields nearly identical results to the reported ones. However,

when we attempt to retrain the model by including the data

from the closely related happy class, we obtain a significant

performance drop. This is evidence that a simple assumption

(here, to dismiss happy examples) can lead to an incomplete

view about a model’s effectiveness. The GLAM architecture

outperforms both models from [27, 6], which follow the exact

same unconventional protocol. The available code of [27, 6]

was not executable or maintained.

In Table 3, we summarize the findings from our repro-

ducibility study, where we report the WA metric measured

according to the protocol described in 3.3.

# Publication Pretrained Reproducibility WA (%)

1 Cai et al. [18] ✓ ✓ 78.15

2 Shor and Ven. [22] ✓ ✓ 68.05

3 Aftab et al. [4] ✗ ✓ 71.43

4 Zou et al. [10] ✗ ✓ 69.2

5 Wang et al. [14] ✗ ✓ 69.61

6 Zhu and Li [5] ✗ ✗ 63.82

7 Feng et al. [8] ✗ ✗ -

8 Xu et al. [27] ✗ ✗ -

9 Xu et al. [6] ✗ ✗ -

Table 3: Reproducibility experiments. Pretrained column in-

dicates whether the implementations share trained weights.

5. CONCLUSIONS

In this paper, through an empirical case review and analy-

sis of published work of SER systems based on IEMOCAP,

we investigated the choices made in the design and evalua-

tion of SER systems through a lens of ease of comparing per-

formance, generalizabilty and reproducibility. We encourage

future works to design and evaluate their methods according

to a common protocol (such as that suggested based on well

executed studies). The lack of which can hinder our ability

to fairly compare and reproduce results of different methods,

and make collective advance as a community. In the future,

we hope this case study will lead to the establishment of a

well-defined set of ”good practices” while designing, build-

ing and releasing data and evaluation benchmarks for SER.
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