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ABSTRACT
Query Rewriting (QR) plays a critical role in large-scale

dialogue systems for reducing frictions. When there is an en-
tity error, it imposes extra challenges for a dialogue system
to produce satisfactory responses. In this work, we propose
KG-ECO: Knowledge Graph enhanced Entity COrrection for
query rewriting, an entity correction system with corrupt entity
span detection and entity retrieval/re-ranking functionalities.To
boost the model performance, we incorporate Knowledge
Graph (KG) to provide entity structural information (neigh-
boring entities encoded by graph neural networks) and textual
information (KG entity descriptions encoded by RoBERTa).
Experimental results show that our approach yields a clear
performance gain over two baselines: utterance level QR and
entity correction without utilizing KG information. The pro-
posed system is particularly effective for few-shot learning
cases where target entities are rarely seen in training or there
is a KG relation between the target entity and other contextual
entities in the query.

Index Terms— Query rewriting, knowledge graph, entity
correction, graph neural network, few-shot learning

1. INTRODUCTION

Large-scale conversational AI based dialogue systems like
Alexa, Siri, and Google Assistant, serve millions of users on a
daily basis. Inevitably, some user queries result in frictions or
errors. Such frictions may originate from either the dialogue
system itself, or user ambiguity. Query Rewriting (QR) aims
to automatically rephrase a user query into another form. For
instance, the upstream module in a dialogue system may pro-
duce a query with a wrong song name: “play bad boy dance
by lady gaga”. The QR system should rewrite the utterance
into “play bad romance by lady gaga”.

In query rewriting, corrupt entity correction1 can be chal-
lenging when we have no knowledge about the entities and
limited context information. To address this, we utilize an
external knowledge graph, namely Wikidata2, to facilitate the

*This work was completed while the first author was an intern at Amazon.
1We focus on entity correction for textual inputs. Various related terms are

used in literature, including entity retrieval / resolution / understanding with
noisy input.

2https://www.wikidata.org

entity correction task. Typical functionalities for a conver-
sational AI include playing music, playing videos, reading
books and weather forecast. We found Wikidata can cover
most common entities in user queries such as celebrity names,
artwork names, media names and locations.

In this work, we introduce a two-layer approach: retrieval
(L1), and re-ranking + span detection (L2). In the second layer
we jointly re-rank the entity candidates and detect whether
and where a corrupt/erroneous entity span exists in the query.
The span detection task is critical for ensuring the flexibility
of the QR system, as we do not assume any upstream Natural
Language Understanding (NLU) or Named-entity recognition
(NER) module providing entity candidates. In both L1 and
L2, we incorporate the KG text description of entities, and
leverage the Graph Attention Network (GAT) [1] to encode
the KG structural information. Evaluations are conducted on
a friction set and a clean set, representing different scenarios
of real-world applications. The effectiveness of our system is
demonstrated by a clear performance gain over two baselines:
an utterance level QR system (gUFS-QR) [2] and an entity
correction QR system without KG information.

2. RELATED WORK

Existing efforts treat QR as text generation problem[3] or
retrieval problem[2, 4, 5, 6]. Entities have been shown to
be a strong indicator of text semantics and be critical to QR
task[6]. With particular emphasis on entities, we can also
easily leverage Knowledge Graphs (KG), which provides rich
information about entities. Our work is the first effort to utilize
KG information in the QR task.

Our work is also closely related to two entity-level tasks:
entity correction and entity linking. Entity correction [7, 8,
9, 10] aims to tackle errors occurring in Automatic Speech
Recognition (ASR) systems. These studies adopt an “entity-
to-entity” approach for entity correction, however, we take the
query as context, and perform contextualized entity correction.
Meanwhile, we do not assume we know the location of the
corrupt entity if it exists. Thus we perform entity span detec-
tion jointly with entity re-ranking. Entity linking [11, 12] is
another similar task which aims to link mentioned entities with
their corresponding entities in a knowledge base. Our work
is more challenging because the input utterance is noisy with
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Fig. 1. KG-ECO System Overview. The input query “play bad boy dance by lady gaga” is the output from upstream ASR system
which contains one corrupt entity “bad boy dance”. Our KG-ECO system, which has a two-stage architecture, predicts the correct
entity “bad romance” together with the span of corrupt entity. The final rewrite is produced through a textual replacement. KG
information is utilized by our system.

incorrect entities.

3. KG-ECO

Our Knowledge Graph enhanced Entity COrrection system
(KG-ECO) consists of two layers: retrieval (L1) and re-ranking
+ span detection (L2), as illustrated in Figure 1. For each utter-
ance, we efficiently retrieve top-K relevant entities3 encoded
by the L1 model (a bi-encoder model) from the entity index.
Then, the L2 model (a cross encoder model) re-ranks the top-
K retrieved candidates, and detects a corrupt span (possibly
empty) from the input utterance. Finally, under optimized
triggering conditions, the top ranked entity will be used for
rewriting via a textual replacement.

3.1. L1 Retrieval

For the L1 retrieval model, we adopt a bi-encoder architecture,
which comprises an utterance encoder and an entity encoder.
The utterance encoder Eutt is a RoBERTa based model, accept-
ing the source utterance as the input. The entity encoder Eent
consists of a RoBERTa based “Entity Description” encoder,
and a GAT encoder, which consumes one-hop subgraphs as
its input, described in details later. The relevance between
an utterance p and an entity q is defined by their dot product
similarity:

sim(p, q) = Eutt(p)
T · Eent(q) (1)

3In this work, we retrieve and re-rank entities in surface form (the textual
name of an entity), as the resolved entity labels are NOT available in query
rewriting data. In case of polysemy (one surface form corresponds to multiple
KG entities), we incorporate multiple entities into the input.

Training. We utilize Negative Log-Likelihood (NLL) as
the loss function in training such that relevant utterance and
entity pairs will have higher dot product similarity than nega-
tive pairs. Positive entities (ground truth) were specified when
data sets were constructed. To obtain negative entities, we
used two approaches: in-batch negatives and hard negatives.
In-batch negatives are the other entities in the same training
batch that are not positive. In this way, we efficiently utilize
the computation of entity embeddings for an entire batch. For
hard negatives, we follow [13] and [14] to use hard negative
entities in retrieval training. For instance, the positive entity
“carson city” has its hard negative “corbin city”. This helps the
retrieval layer to distinguish an entity from its highly similar
competitors in the entity index.

Inference. After training, we first produce entity embed-
dings using the entity encoder, and build an index via FAISS
[15], a scalable similarity search framework for dense vectors.
In inference, given an utterance, we obtain its embedding and
conduct FAISS search from the index to retrieve the top-K
most similar entities in terms of dot product. These top-K
entities are candidates for the next stage.

3.2. L2 Re-ranking + Span Detection

The L2 architecture consists of a RoBERTa based cross en-
coder and a GAT encoder. The cross encoder consumes both
the utterance and the entity and its description as input. The
L2 layer is a joint learning model with two learning tasks:
re-ranking and span detection.

For re-ranking, given a pair of utterance and entity, we con-
catenate the output vector of CLS token of RoBERTa and the
pooling output vector of GAT, and pass them to an MLP layer



to produce the relevance score of the pair. For corrupt entity
span detection, we predict the span’s start and end positions at
the token level, following similar approaches such as in [16]
and [17]. Specifically, assume WS and WE are the start and
the end vector respectively, and Ti ∈ RH is the final hidden
vector for the ith input token, then the score of a candidate
span from position i to position j is computed as:

sij = WS · Ti +WE · Tj (2)

In addition, we introduce a special case: a null span, which
means that no corrupt entity exists. This happens when i =
j = 0, i.e., the start and end tokens are both the CLS token
of RoBERTa. We select a threshold θ for null prediction, by
balancing the precision and false trigger rate.

3.3. KG Enhanced Component: Entity Description

KG provides short textual descriptions of entities. We use
these to augment the textual input: we concatenate an entity
and its descriptions, separated by special token [des]. For
example, entity “bad romance” is polysemic, corresponding
to two KG entities, a song and a film. We concatenate both
descriptions to obtain the input “bad romance [des] song [des]
2011 film”. The description “song”, will help the system to
learn the relevance between utterance “play bad boy dance by
lady gaga” and entity “bad romance”.

3.4. KG Enhanced Component: GAT

We incorporate Graph Attention Network (GAT) [1], a state-of-
the-art Graph Neural Network architecture, as a component in
both L1 and L2 modules. Assume (h0, ..., hn) is a sequence of
graph node embeddings. A GAT layer outputs a transformed
sequence (h′0, ..., h

′
n). Assume Ni is the neighborhood of

node i.

αij =
exp(LeakyReLU(aT [Whi||Whj ]))

Σk∈Ni
exp(LeakyReLU(aT [Whi||Whk]))

(3)

h′i = σ(Σj∈Ni
αijWhj) (4)

where || represents concatenation, and σ is a non-linear activa-
tion.

In this work, we use the one-hop subgraph of the target
entity as the input to GAT. To be specific, the input KG em-
beddings, including both node and relation embeddings, are
pre-trained with the link prediction objective. These input
embeddings are fixed during training.

The vanilla GAT design does not support relation-type
learning, and only transforms node embeddings. Inspired by
[18], we introduce a non-parametric composition of node and
relation embeddings. Suppose (i, r, j) is a KG triple, where
i, j are nodes and r is the relation. We apply a non-parametric
function φ to merge the relation and node embeddings (hr, hj)
while updating hi. We experimented with both subtraction and
product for function φ, and finally selected subtraction.

h′i = σ(Σ(r,j)∈Ni
αijWnodeφ(hr, hj)) (5)

Meanwhile, the relation embedding hr is also updated via
a dedicated MLP layer: h′r = Wrelhr.

4. EXPERIMENTS

4.1. Data

Knowledge Graph Datasets. Our entity correction system is
enhanced by Wikidata, one of the largest publicly available
knowledge bases. Specifically, we use the following two data
artifacts: (I) KG Structure/Description. Kensho Derived Wiki-
media Dataset4 is a pre-processed English Wikidata set. It
contains 44M entities and 141M relation triples. This data
set serves as a rich source of external knowledge of graph
structure and textual description. (II) Retrieval Entity Index.
To increase inference efficiency, we use a more condensed
entity set to build the retrieval entity index. We start with a
derived Wikidata version provided by Spacy Entity Linker5,
and further remove entities with digits/punctuation/non-ascii
symbols. The resulting entity index is 3M in surface form
(textual name).

Rephrase Datasets. Rephrase pairs are gathered from the
production traffic of three months in a large-scale dialogue
system. We remove all private and sensitive information in the
utterances, and ensure our data sets are de-identified. Rephrase
pairs are consecutive user queries where the first turn contains
friction and the second turn is successful based on a friction de-
tection model, following the methods described in [5]. Corrupt
and target entities (if they exist) are further extracted using the
NLU hypotheses of the rephrase data.

Training Datasets. For L1 Retrieval training, we use a
subset (2.4M utterances) of the entire training dataset, by re-
quiring that the corrupt and target entity pair exists and the
target entity appears in the entity index. This way we ensure
that the model is trained to retrieve most relevant entities from
the index. For L2 Re-ranking + Span detection training, we
use all the training data (8.5M utterances), so that no-entity-
corruption cases can support null span learning.

Test Datasets. To reflect different scenarios of real-world
applications, our test sets include a friction set (107K utter-
ances) and a clean set (3K utterances). In the friction set, each
source utterance contains exactly one corrupt entity, and the
target entity exists in the entity index. Three subsets of the
friction set are considered: zero-shot, few-shot and KG rela-
tion. zero-shot set contains data where target entities do not
appear in the training set; few-shot set contains data with target
entities appearing 1 ∼ 10 times; in KG relation set the target
entity has a KG relation with some context entity in the source
utterance. The clean set contains utterances that do not need

4https://www.kaggle.com/kenshoresearch/kensho-derived-wikimedia-
data

5https://github.com/egerber/spaCy-entity-linker



KG Component Entity Precision (E-P) NLU Precision (NLU-P)
Overall Zero-shot Few-shot KG-relation Overall Zero-shot Few-shot KG- relation

None 38.7 5.6 23.0 36.8 30.6 4.4 18.8 27.9
Description 41.4 11.6 28.0 39.5 33.0 8.8 23.6 30.4

GAT + Description 43.9 12.3 31.3 43.2 34.9 9.5 26.4 33.1

Table 1. Ablation study of KG-ECO on friction subsets. No trigger threshold applied.

to be rephrased, and serves as a safety measure: it calibrates
how likely a model falsely rewrites a clean input that does not
need to be corrected.

4.2. Evaluation Metrics and Baseline

We use the following evaluation metrics6: Entity Precision
(E-P): The fraction of correct rank 1 entity predictions over
all the triggered predictions. NLU Precision (NLU-P): The
fraction of correct NLU hypothesis predictions (in terms of
exact match) over all triggered predictions. Trigger Rate
(TR): The ratio between rewrite-triggered test samples and all
the test samples. Correct Trigger Rate (CTR): The fraction
of correctly triggered NLU hypothesis predictions over all the
test samples; i.e., Correct trigger rate = Trigger rate × NLU
precision. To generate the NLU hypothesis, we first obtain
the NLU hypothesis for the source utterance, and replace its
corrupt span with the top 1 ranked entity. For the example
in Figure 1, the system replaces “bad boy dance” with “bad
romance” in the NLU hypothesis “Music | PlayMusicIntent |
ArtistName: lady gaga| SongName: bad boy dance”.

gUFS-QR [2], a state-of-the-art QR system, serves as a
baseline. It is a two-layer system, retrieving and re-ranks
utterances and NLU hypotheses. Since we do not assume the
entities are tagged in utterances, “entity-to-entity” approaches
[7, 8, 9, 10] are not appropriate baselines. Besides gUFS-
QR, we also consider our two-layer entity correction system
without the KG components, which is a similar design as
popular entity linking system[11], as a baseline.

4.3. Results

We first present evaluation results without the trigger threshold,
i.e., the rewrite is always triggered. Results of our KG-ECO
system on each friction subset are shown in Table 1. We
observe that KG is particularly beneficial for zero-shot and
few-shot learning. This is expected since the KG serves as an
external source of information. Moreover, we can see GAT
is more effective on the KG-relation set than on the overall
friction set.

Table 2 shows the overall performance of our KG-ECO
system, compared to gUFS-QR baseline7 and the entity correc-

6Trigger rate applies to both friction and clean sets, while the other three
metrics only apply to the friction set.

7By design, gUFS-QR system’s predictions are at utterance/NLU hypoth-
esis level. To evaluate entity precision for gUFS-QR, we check if the target
entity appears in the slot values of top 1 NLU hypothesis.

System E-P NLU-P
gUFS-QR 33.4 26.7

Entity Correction w/o KG 38.7 30.6
KG-ECO 43.9 34.9

Table 2. Performance on friction set. No trigger threshold
applied.

System Friction Set Clean Set
TR ↑ CTR ↑ TR ↓

gUFS-QR 14.9 9.7 2.4
Entity Correction w/o KG 41.8 15.4 2.3

KG-ECO 46.2 18.8 2.3

Table 3. Triggered performance on clean and friction sets.

tion system without KG enhanced components. We can see our
method achieves the best performance in both entity precision
and NLU precision. This shows that leveraging KG benefits
the entity correction task substantially. Notice that even though
the NLU hypothesis prediction is based on a straightforward
replacement method, we can already obtain a decent absolute
improvement of 8.2%.

In Table 3, we present the results with tuned trigger con-
ditions. We search the null threshold for span detection in
(3, 4, 5, 6, 7), keeping only the results that have smaller (false)
trigger rates on the clean set than gUFS-QR. Finally we select
the threshold maximizing the correct trigger rate on the friction
set. Our entity correction system achieves significantly higher
trigger rates, while gUFS-QR appears to be overly conserva-
tive with a low trigger rate. Overall, it is remarkable that the
KG-ECO system outperforms gUFS-QR baseline by 9.1% in
terms of the correct trigger rate.

5. CONCLUSIONS

In this work, we present a novel entity correction approach
for Query Rewriting, powered by Knowledge Graph. The
proposed KG-ECO system significantly outperforms two base-
lines: an utterance level QR system and the entity correction
system without KG information, on different datasets, friction
samples and clean samples. In particular, the system is excep-
tionally effective for few-shot learning, which demonstrates
its potential for generalization.
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