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ABSTRACT
Varicolored haze caused by chromatic casts poses haze removal and
depth estimation challenges. Recent learning-based depth estimation
methods are mainly targeted at dehazing first and estimating depth
subsequently from haze-free scenes. This way, the inner connections
between colored haze and scene depth are lost. In this paper, we pro-
pose a real-time transformer for simultaneous single image Depth
Estimation and Haze Removal (DEHRFormer). DEHRFormer con-
sists of a single encoder and two task-specific decoders. The trans-
former decoders with learnable queries are designed to decode cou-
pling features from the task-agnostic encoder and project them into
clean image and depth map, respectively. In addition, we introduce
a novel learning paradigm that utilizes contrastive learning and do-
main consistency learning to tackle weak-generalization problem for
real-world dehazing, while predicting the same depth map from the
same scene with varicolored haze. Experiments demonstrate that
DEHRFormer achieves significant performance improvement across
diverse varicolored haze scenes over previous depth estimation net-
works and dehazing approaches.

1. INTRODUCTION

With the development of deep learning technology, the computer vi-
sion community has entered a prosperous era [1–7].

Low-level vision tasks are further developed as deep learning
advances [8–14]. Haze, as a common weather phenomenon, would
result in severe visibility degradation, which also seriously harms
high-level vision tasks, such as object detection, depth estimation,
etc. Therefore, single image dehazing, as a long-standing low-level
vision task, the haze effect can be formulated by the following well-
known atmosphere scattering model mathematically:

I(x) = J(x)t(x) +A(x)(1− t(x)), (1)

where I(x) is the observed hazy image, J(x) is the clean one, t(x)
is the transmission map and A(x) stands for the global atmospheric
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light. Single image dehazing is a classical ill-posed problem, due to
uncertain parameters: t(x) and A(x), while the transmission map
t(x) is a parameter associated with depth:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere and d(x) is
the depth map. As previously mentioned, due to the influence of
the scattering particles in the atmosphere, existing widely-employed
depth sensors, like LiDAR or Kinect, etc, are not reliable and robust
in haze scenes.

Varicolored haze, as a more challenge ill-posed problem, offers
diverse hazy conditions with vary colors. To the best of our knowl-
edge, the varicolored haze removal is a less-touched topic in the vi-
sion community, but it is worth exploring for many applications.

In this work, we present a new task: jointly perform depth esti-
mation and haze removal from varicolored haze scenes. To handle
this new task, we present a novel end-to-end transformer, namely
DEHRFormer, perform Depth Estimation and Haze Removal by
a unified model. Our DEHRFormer aims to tackle several long-
standing but less-touch problems as follows: (i) Varicolored haze
scenes. Compared with common haze scenes, varicolored haze is
a larger collection of haze conditions with more challenging degra-
dations. However, most existing dehazing manners often meet dif-
ficulties when trying to handle it [15] (ii) Domain gap problem
for varicolored dehazing. The domain gap between real and syn-
thetic varicolored haze domains makes networks only supervised
by synthetic data hard to generalize well for the real varicolored
haze images. Previous arts usually utilize complex image translation
paradigm [16] or unsupervised learning based on hand-craft priors
to bridge it [15], which are inefficient and unstable when training.
(iii) Domain consistency problem for varicolored image depth es-
timation. Estimating depth maps from haze scenes is an existing
topic, but previous manners [17, 18] ignore the domain consistency
between clean and hazy domains, which means different depth maps
may be produced from the same scene with or without haze.

For challenging varicolored haze scenes, we introduce haze type
queries in the transformer-based dehazing decoder to learn diverse
varicolored haze degradations, which employ multiple head self-
attention mechanism to match learnable haze queries with sample-
wise degraded features, to project degraded features into the clean
feature space. In depth decoder, we further employ learnable queries
as the medium to effectively capture depth information from clean
features. For domain consistency problem, we present domain con-
sistency learning to maintain the consistency of depth maps over
haze and clean scenes. For domain gap problem, we introduce a
novel semi-supervised contrastive learning paradigm, which explic-
itly exploits the knowledge from real-negative samples to boost gen-
eralization of DEHRFormer on real varicolored scenes. Moreover,
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Fig. 1. The overview of network architecture. The Coupling Learning Encoder consists of 4 scale-levels, which means that the N is set as 4
in our experiments. For each encoder stage, there only two Multi-Scale Feature Modeling (MSFM) blocks to extract features for transformer
decoders. For dehazing decoder and depth decoder, we set M as 5 for a better trade-off between performance and model-parameters.

we propose the first varicolored haze scene depth estimation dataset,
which consists of 8000 paired data for varicolored haze removal and
depth estimation tasks. We summarize the contributions as follows:

• This work focuses on a novel and practical tasks: varicolored
image dehazing and depth estimation. Compared with prior
arts which only consider common haze removal (grayish haze
scenes) or depth estimation from clean scenes, we are the first
to joint consider dehazing and estimating depth maps from
varicolored haze scenes in a unified way.

• We propose a real-time transformer for depth estimation
and haze removal, which unifies the challenging varicolored
haze removal and depth estimation to a sequence-to-sequence
translation task with learnable queries, significantly easing
the task pipeline.

• A semi-supervised learning paradigm is proposed to boost the
generalization of DEHRFormer in the real haze domain. Fur-
thermore, we considered the domain consistency of depth es-
timation over the haze and clean domains.

2. METHOD

2.1. Coupling Learning Encoder

In our architecture, we first offer a Coupling Learning Encoder to
capture features from degraded images. Different from previous
approaches [19, 20], in the encoder, we apply a CNNs-based en-
coder to extract coupling features of dehazing and depth estima-
tion, which is the basis for achieving real-time efficiency for infer-
ence due to itsO(N) complexity compared toO(N2) computational
complexity of self-attention. Inspired from NAFNet [21], the high-
dimension space is crucial for extracting features. Nevertheless, it
only adopts the simple 3×3 depth-wise convolution to perform mod-
eling. To enhance the coupling learning ability of features for the en-
coder, we propose Multi-scale Feature Modeling block (MSFM), in
which multi-scale convolution is presented in high-dimension space
to boost the performance of excavating coupling features of haze
removal and depth estimation. As shown in Fig.1, given an input
feature Xe

i , our Coupling Learning Encoder can be expressed as:

Xe
i+1 = MSFMN

(
Xe
i ∈ R

µ

2i
× w

2i
×Ci ↓

)
, (3)

where the e denotes the encoder,Xi indicates the feature of i-th layer
encoder. H and W mean the height and width of input image. ↓ is
the down-sampling operation, we perform overlapped patch merging
as follows [22]. There are four stages in our coupling encoder.

2.2. Task-specific Decoder For Features Decoupling
Motivated by DETR [23], we attempt to use learnable queries to de-
code coupling features via a unified task-specific decoder. The de-
coding can be seen as sequence-to-sequence translation, which ex-
ploits learnable queries to translate the features from the coupling
encoder. For the dehazing decoder, we aim to utilize the learn-
able haze queries Qh as prototypes to study varicolored degrada-
tions. Specifically, the degradation-wise type queries Qh are used
to adaptively decode the varicolored information from encoder via
a sequence-to-sequence manner. Given the coupling feature Xe

4 ∈
R
H
16
×W

16
×C4 , we feed it into our Task-specific Decoder of dehazing

and reshape it into 3d sequenceXs
4 ∈ RN×C4 , whereN = H

16
×W

16
.

We employ the linear layer to projectXs
4 into Key (K) and Value (V).

Therefore, the decoupling can be expressed as follows self-attention:

X
′
h = Softmax

(
QhK

T

√
C4

)
V, (4)

whereX
′
h denotes the dehazing feature decoupled from the encoder.

For the decoupling feature, we then use up-sampling layer to go back
to the original resolution. We add Residual Block [24] in each stage
and have skip connections across each stage. For the depth de-
coder, we devise the decoder to decouple the features into depth
estimation space. The learnable depth queries Xd in this decoder
are leveraged to decode the depth information for various scenes.
Unlike the dehazing decoder, we utilize Xd to decouple the depth
feature from the dehazing featureX

′
h instead of encoder featureXe

4 .
This can promote the network to process depth estimation from the
clean feature to some extent. Therefore, our unified Task-specific de-
coder is serial. The overall self-attention and recover original feature
size are consistent with the method of dehazing decoder.
2.3. Semi-supervised Contrastive Learning
For image restoration, conventional contrastive learning paradigm
usually only exploit synthetic negative samples to boost model per-
formance. However, real degraded samples are accessible for us,
these manners ignore this point and only focus on how to boost the



model performance of synthetic domain. For bridging the gap be-
tween synthetic and real domain, we introduce the semi-supervised
contrastive learning:

C
(
v, v+, v−

)
=

− log

[
exp

(
δ(v) · δ

(
v+
))

exp (δ(v) · δ (v+) /) +
∑N
n=1 exp

(
δ(v) · δ

(
v−r
))] (5)

where δ(v), δ(v)+, δ(v)− denote the anchor sample, positive sam-
ple, and negative sample, respectively. δ(·) is the feature extraction
operation by the VGG-19 network. And N denotes the total number
of negative samples. Our contrastive learning loss is defined as:

LCR = C
(
Jsyn, Jgt,

{
În
}N
n=1

)
(6)

where Jgt is the ground truth of the input image, Jsyn is the out-
put result of DEHRFormer and N is the total number of real-world
varicolored haze images in a single batch.

In our semi-supervised paradigm, we exploit real-world hazy
samples as negative samples, and predicated results as anchor sam-
ples. Different from previous contrastive learning manners, we
leverage the set of real hazy images by all varicolored types as the
negative samples. The positive sample guides our DEHRFormer
to mine clean knowledge by the feature space, while real-negative
samples enhance the discriminative knowledge of our network
for diverse varicolored haze images. Our semi-supervised learning
paradigm provides a lower bound to limit the output of DEHRFormer
away from real-world negative samples, which enhances the gener-
alization of our model on the real domain.

2.4. Domain Consistency Learning

Popular depth estimation networks that only learn from the clean
domain usually meet failures in haze scenes. Vice versa, the model
that only learns knowledge from the haze domain would meet the
generalization decline problem in the clean domain, which is not
obviously neglectable. To achieve the generalization consistency
between both domains, we present an additional constraint, which
enforces our DEHRFormer to predict the same depth maps from the
same scenes with or without hazy degradations. Let’s denote Jdgt and
Jdclean as the ground-truth depth map and the depth map predicted
from the clean scene by our network. The constraint to perform do-
main consistency learning can be introduced as follows:

LDC = D(Jdgt, J
d
clean) (7)

where D(·) denotes the Norm-based function to measure distance.

2.5. Loss Functions

We use Charbonnied loss [25] as our reconstruction loss:

Lchar =
1

N

N∑
i=1

√
‖Xi − Y i‖2 + ε2, (8)

where Xi and Y i denote the predicted results and corresponding
ground-truth. The constant ε is empirically set to 1e−3 for all exper-
iments. Our overall loss functions can be formulated as follows:

L = λ1Lchar(Jdgt, Jdsyn)+λ2Lchar(Jhgt, Jhsyn)+λ3LCR+λ4LDC ,
(9)

where J{d,h}syn and J{d,h}gt are the estimated depth map and dehazing
image, and ground-truth of depth map and haze image, respectively.
λ1, λ2, λ3 and λ4 are set to 1, 1, 0.5 and 1 in our all experiments.

3. EXPERIMENTS

Implementation Details. We implement our framework using Py-
Torch with a RTX3090 GPU. We train our model 200 epoch with the
patch size of 256×256. We adopt Adam optimizer, its initial learn-
ing rate is set to 2 × 10−4, and we employ CyclicLR to adjust the
learning rate. The initial momentum is set to 0.9 and 0.999. For data
augmentation, we apply horizontal flipping and randomly rotate the
image to 0,90,180,270 degrees.
Datasets. To facilitate the development of this task, we propose
the first varicolored haze scene depth estimation dataset, which in-
cludes 8000 paired data, named varicolored haze removal and depth
estimation (VHRDE) dataset. We utilize 6,000 paired haze image
from VHRDE for training and 2,000 paired data from VHRDE for
testing. For real-world varicolored hazy samples, we utilize 2,000
real hazy images from the URHI (Unannotated Real Hazy Images)
dataset [26] for semi-supervised training and 1,000 real hazy sam-
ples for testing by No-reference image quality assessment.
Compared with SOTA Methods. We conduct extensive exper-
iments to demonstrate the superiority of our algorithm compared
to previous SOTA dehazing methods and depth estimation meth-
ods. For varicolored haze removal, we compared with DCP [27],
GDCP [28], PSD [15], SDDE [17], PMNet [29] and NAFNet [21].
We retrain the DL-based model on our proposed varicolored haze
training set and perform inference to ensure a fair comparison. We
use PSNR and SSIM to compare the performance of dehazing quan-
titatively. We can observe that the proposed DEHRFormer achieves
the best results on PSNR and SSIM metrics in Table.1. Compared to
the second best approach NAFNet [21], we exceed the 0.41dB and
0.1 on PSNR and SSIM. We also present the visual comparison with
previous SOTA methods in Fig.2. It can be seen that our method can
remove the varicolored haze thoroughly, while the previous meth-
ods still have various residual haze. Also, as shown in Table. 1, we
employ the well-known no-reference image quality assessment indi-
cator to highlight our merits in real-domain, i.e., NIMA [30], which
predicts aesthetic qualities of images. Fig.3 presents the different de-
hazing results in real-world images, our method obtains the best re-
sults of removing all varicolored haze compared to other algorithms.

Table 1. Dehazing results on the proposed VHRDE dataset and
real-world dataset. Bold and underline indicate the best and second
best metrics.

Method PSNR↑ SSIM↑ NIMA↑
(TPAMI’10)DCP [27] 13.19 0.732 -
(CVPR’16)GDCP [28] 15.34 0.756 -
(ICRA’20)SDDE [17] 20.82 0.768 3.3203
(CVPR’21 Oral)PSD [15] 14.12 0.744 3.4856
(ECCV’22)NAFNet [21] 23.01 0.866 3.4692
(ECCV’22 Oral)PMNet [29] 22.54 0.845 3.4415

DEHRFormer 23.42 0.876 3.7556

For the depth estimation, We use the most common depth esti-
mation metrics [31] to quantitatively measure the performance of
our model in depth estimation, including root mean square error
(RMSE), Abs relative error, and accuracy δ1, δ2, δ3 [17]. For a
fairer and more diverse comparison, for the dehazing algorithms
[27] [32] [15] [29] [21], we first perform the dehazing manner and
then use the depth estimation model [18] to acquire the depth map.
For SDDE [17] and our DEHRFormer, the depth map is directly ob-
tained from the haze map. The quantitative metrics are presented in
Table.2. We found that our framework achieves the best results on
five metrics. It is worth mentioning that the paradigm of dehazing



first and then depth estimation does not perform well, due to the gap
between the dehazing image and the clean image. This has a signif-
icant impact on clean-to-depth networks. Our method can explicitly
extract the relationship between haze and depth and facilitate depth
estimation directly from haze images. The visual comparison is pre-
sented in Fig.2. It can be seen from Fig.2 that the predicted depth
map better reflects the real structure scene, and the transition of de-
tails is smoother than the SOTA approaches. We show the inference
time cost1 in Table.2. It can be seen that DEHRFormer attracts real-
time performance in the inference stage and surpass the previous
SDDE method or dehazing-to-depth approaches.

（a) Input （b) DCP （g) PMNet（f) NAFNet（e) PSD（d) SDDE（c) GDCP （h) Ours （i) GT

（a) Input （b) DCP （g) PMNet（f) NAFNet（e) PSD（d) SDDE（c) GDCP （h) Ours （i) GT

Fig. 2. Visual comparison of dehazing and depth estimation on the pro-
posed VHRDE testing set.

Table 2. Depth Estimation results on the proposed VHRDE
datasets. Bold and underline indicate the best and second best met-
rics.

Method RMSE↓ Abs Rel↓ δ1 ↑ δ2 ↑ δ3 ↑ Inf. Time(in s)
(TPAMI’10)DCP [27]+MegaDepth 0.313 0.79 0.289 0.492 0.633 -
(CVPR’16)GDCP [28]+MegaDepth 0.305 0.681 0.314 0.528 0.670 -
(ICRA’20)SDDE [17] 0.299 0.688 0.303 0.526 0.678 0.219
(CVPR’21 Oral)PSD [15]+MegaDepth 0.324 0.765 0.324 0.483 0.634 0.372
(ECCV’22)NAFNet [21]+MegaDepth 0.298 0.720 0.293 0.513 0.677 0.135
(ECCV’22 Oral)PMNet [29]+MegaDepth 0.321 0.975 0.271 0.453 0.580 0.236

DEHRFormer 0.286 0.640 0.324 0.552 0.695 0.034

4. ABLATION STUDY
For ablation studies, we follow the basic settings presented above
and conduct experiments to demonstrate the effectiveness of the
components of our proposed comprehensive manner. Next, we
analyse the influence of each element individually.
Improvements of Learnable Queries. This part aims to demon-
strate the effectiveness of proposed learnable queries in the Task-
specific Decoder. We present the results in Table.3. We observe
that learnable queries can facilitate the decoder adaptively decouples
the information we need from the coupling encoder via sequence-to-
sequence. In addition, we notice that the number of learnable queries
also affects the performance of the decoupling decoder.
Benefits of Semi-supervised Contrastive Learning. To boost the
generalization of our model in the real-domain, we propose Semi-
supervised Contrastive Learning. We tend to verify the gains of

1Worth noting that we compare DEHRFormer with other Dehazing-
DepthEstimation pipelines and single-stage manner, (i.e, SDDE) for a fair
comparison. And the time reported in the table corresponds to the time taken
by each model or pipeline feed forward an image of dimension 512 × 512
during the inference stage. We perform all inference testing on an RTX3090
GPU for a fair comparison. Notably, we utilize the torch.cuda.synchronize()
API function to get accurate feed forward run-time.

（a) Input （e) PMNet（d) NAFNet（c) PSD（b) SDDE （f) Ours

Fig. 3. Visual comparison of dehazing on the real-world hazy im-
ages.

Table 3. Ablation Study on The Learnable Queries
Method RMSE↓ PSNR↑
w/o learnable queries 0.301 22.62
w 24 learnable queries 0.295 22.86
w 64 learnable queries 0.291 23.01
DEHRFormer 0.286 23.42

Contrastive Learning in this part. We found that real-domain neg-
ative samples can enhance the generalization of our model. It is
worth mentioning that although synthetic samples can slightly im-
prove our metrics on synthetic datasets, the generalization ability on
real-world datasets drops significantly. We also explored the effect
of the ratio of positive and negative samples on model performance.
We found that more negative samples can facilitate the model to ex-
ploit negative information, we only choose the 1:1 ratio to conduct
the experiments due to the best trade-off between performance and
graphics memory.

Table 4. Ablation Study on the Semi-supervised Contrastive
Learining

Method NIMA↑ PSNR↑
w/o CL 3.4345 22.79
CL w SS 3.4492 23.51

CL w 1:5 3.8144 23.55

CL w 1:10 3.8832 23.69

DEHRFormer 3.7556 23.42

Effectiveness of Domain Consistency Learning. To demonstrate
the gain of proposed Domain Consistency Learning (DCL), we re-
move the domain consistency learning and observe the effect on es-
timating clean image depth maps directly from haze maps. From Ta-
ble.5, We believe that Domain Consistency Learning can maintain
the consistency between the depth maps of haze and clean scenes.

Table 5. Ablation Study on The Domain Consistency Learning
Method RMSE↓ Abs Rel↓
w/o DCL 0.299 0.651
DEHRFormer 0.286 0.640

5. CONCLUSIONS

In this work, we propose a novel real-time transformer to tackle a
new task: depth estimation and haze removal from varicolored haze
scenes. Moreover, we present a semi-supervised contrastive learn-
ing paradigm for the domain gap problem to achieve domain adap-
tation in real-world haze scenes. To maintain depth estimation per-
formance in clean scenes, we propose domain consistency learning
to simultaneously enforce network learns from hazy and clean do-
mains. Extensive experiments on synthetic and natural varicolored
haze data demonstrate the superiority of our DEHRFormer.
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