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ABSTRACT

Knowledge distillation conducts an effective model compres-
sion method while holding some limitations: (1) the feature
based distillation methods only focus on distilling the feature
map but are lack of transferring the relation of data examples;
(2) the relational distillation methods are either limited to the
handcrafted functions for relation extraction, such as L2 norm,
or weak in inter- and intra- class relation modeling. Besides,
the feature divergence of heterogeneous teacher-student archi-
tectures may lead to inaccurate relational knowledge transfer-
ring. In this work, we propose a novel training framework
named Class-Oriented Relational Self Distillation (CORSD)
to address the limitations. The trainable relation networks
are designed to extract relation of structured data input, and
they enable the whole model to better classify samples by
transferring the relational knowledge from the deepest layer of
the model to shallow layers. Besides, auxiliary classifiers are
proposed to make relation networks capture class-oriented rela-
tion that benefits classification task. Experiments demonstrate
that CORSD achieves remarkable improvements. Compared
to baseline, 3.8%, 1.5% and 4.5% averaged accuracy boost
can be observed on CIFAR100, ImageNet and CUB-200-2011,
respectively.

Index Terms— Knowledge Distillation, Model Compres-
sion, Relation Learning.

1. INTRODUCTION

Driven by the deep neural network (DNN), computer vision [1,
2] has developed at an unprecedented speed. The success of
SOTA model usually depends on high computing and storage
costs, and various techniques for model compression have been
proposed, such as pruning [3], quantization [4] and knowledge
distillation [5, 6, 7], in which the inspiration of knowledge
distillation comes from the knowledge transferred from teacher
model to student model. Moreover, self distillation (SD) [8]
has been proposed to distill knowledge from deeper layers to
shallower layers within one model. Due to its efficiency, many
researches [9, 10] have enforced various criteria based on SD.

Recently, relation learning has become popular in deep
learning [11, 12]. However, in knowledge distillation, most of
the methods with or without relation learning, are faced of the
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following two issues: (1) Previous methods without relation
learning only focus on the alignment of output logits [6] or fea-
tures [5] from teacher to student but ignore the transferring of
relation of data examples,leading to low-efficiency distillation.
(2) Lately, some works propose to improve the performance of
knowledge distillation by transferring relation of data samples
but are limited in handcrafted functions for relation extraction,
such as L2 norm [11] or inner product [12]. These naive re-
lation extraction methods often fail to make full use of the
relational knowledge, i.e., inter-class contrastiveness and intra-
class similarity. Furthermore, direct transferring of knowledge
from teacher to student of different architectures ignores the
hierarchical feature divergence within models, which may lead
to inaccurate relation transferring in feature space.

In this work, we propose a novel training framework named
Class-Oriented Relational Self Distillation (CORSD) to over-
come these obstacles. In order to make full use of sample
relation, we use structured input where each input image is
randomly coupled with a positive image of the same class
and a negative image of a different class. Rather than using
handcrafted functions for relation extraction, we design the
trainable relation networks to extract the inter-class and intra-
class relational knowledge of the structured input. In order
to train the relation networks for better relation modeling and
reinforcement, we adopt the typical triplet loss [13] to further
enhance the inter-class contrastiveness and intra-class simi-
larity. As a result, the class-aware relation is obtained and
enhanced, and then be transferred from the deepest layer of the
backbone to shallow layers. Moreover, auxiliary classifiers are
proposed to help relation networks to capture class-oriented
relation that is beneficial to classification task.

To sum up, the contribution of this work can be summa-
rized as follows: (1) We propose a novel training framework
named CORSD. The trainable relation networks are designed
to capture inter-class and intra-class relation of structured in-
put, and the transferring of the relational knowledge from the
deepest layer to shallow layers enables the whole model to
better discriminate and classify input. (2) Auxiliary classifiers
are utilized to help the relation networks for class-oriented
relation extraction that are beneficial to classification task,
leading to high-efficiency relational distillation. (3) Extensive
experiments on three datasets across six models demonstrate
that our proposed CORSD outperforms the SOTA distillation
methods by a large margin.
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Fig. 1: The overview of our proposed training framework Class-Oriented Relational Self Distillation (CORSD). Best viewed in color.

2. METHODOLOGY

For an input image xo, we randomly choose another image
with the same label as the positive image xp along with an
image with any different label as the negative image xn. Then
we make the positive pair Xp = (xo, xp) and the negative
pair Xn = (xo, xn) together to be our structured input, which
respectively encodes the intra-class and inter-class samples.
Note that during every training epoch, each image in the train-
ing set is trained only once. Therefore, the batch size of
training is a multiple of 3 and for fair comparison, the batch
size of all other competing methods in section 3.1 is the same
as ours. For dataset CIFAR, CUB-200-2011 and ImageNet,
the batch size is 129, 129 and 255, respectively. As the above
process of data split is completely random, the training setting
brings no extra benefit to the results. The overview of CORSD
is shown in Figure 1. Since all the relation networks, auxil-
iary classifiers are dropped during inference, it brings no extra
computation or memory overheads.

2.1. Relation Network Training

Relation Network Architecture Assuming there are total k
convolution blocks in the backbone and larger index of con-
volution block represents deeper layer, the relation networks
are attached to different depths of the backbone model. And
the relation networks are independent along k depths of con-
volution blocks and hold their own parameters. Specifically,
our designed trainable relation networks at the ith convolution
block can be denoted as Φ parameterized by ϑi. Φ is two-fold
where the first part gRN is the Feature Projection Layer (FPL)
consisting of several convolutional layers which serves for fea-
ture projection. And the second part is the learnable Relational

Interaction Block (RIB) ψRN , comprising fully connected
layers which are applied for final relation calculation. The
detailed structure of relation network is shown in Figure 1(b).

Relation Reinforcement and Distillation The images xo,
xp and xn are fed into the backbone to obtain the correspond-
ing features at different depths. Let f io, f ip and f in respectively
be the features of xo, xp and xn for the ith convolution block.
We first concatenate the structured input features in couples,
i.e., f io is respectively concatenated with f ip and f in for the
stacked positive and negative pairs, which can be described
as F i

p = [f io, f
i
p] and F i

n = [f io, f
i
n]. Then, the relation within

the positive pair as well as the negative pair can be given as
Ri

p = Φ(F i
p;ϑi) and Ri

n = Φ(F i
n;ϑi). Ri

p and Ri
n represent

the distance measure within the positive pair and negative pair
in feature space. Therefore, the smaller Ri

p is, the closer rela-
tion within the positive pair is, and for Ri

n vice versa. Then we
introduce the triplet loss Ltriplet to train our relation networks
to encourage closer interrelation within the positive pair (intra-
class) and distant relation within the negative pair (inter-class)
by margin m:

Ltriplet = α

k∑
i=1

max(Ri
p −Ri

n +m, 0), (1)

where α is the hyper-parameter and margin m is usually set to
1. Then, the relation distillation loss LRD is utilized to transfer
the relation Ri

p and Ri
n from the deepest layer to shallow

layers:

LRD = β

k−1∑
i=1

(
`2(Ri

p, R
k
p) + `2(Ri

n, R
k
n)
)
. (2)

where β is the hyper-parameter and `2 represents L2 norm that
induces the relation within the positive and negative pairs at



Model Baseline KD [6] FitNet [5] DML [14] RKD [11] AT [15] SP [12] CC [16] SD [17] CS-KD [9] TF-KD [7] PS-KD [10] CORSD

ResNet18 77.09 78.34 78.57 78.72 78.53 78.45 79.02 78.76 78.64 79.51 78.43 79.90 81.10 ↑1.20
ResNet101 77.98 78.97 79.12 79.82 79.59 79.65 80.12 79.91 80.23 81.12 80.04 81.59 82.21 ↑0.62

ResNeXt50-4 79.49 80.46 79.54 80.39 80.94 81.05 80.67 80.72 82.45 81.63 80.14 82.10 82.50 ↑0.05
WideResNet50-2 79.13 80.15 79.52 79.95 80.54 80.42 80.78 80.94 82.16 81.71 80.45 82.15 83.02 ↑0.86

WideResNet101-2 79.53 80.52 79.65 80.69 80.46 80.71 81.05 81.19 82.56 82.16 80.93 82.41 83.55 ↑0.99
SEResNet18 77.27 78.43 78.49 78.58 78.17 78.81 78.42 78.56 79.01 79.86 78.96 79.67 80.70 ↑0.84
SEResNet50 77.69 78.89 78.82 79.72 79.11 79.02 78.74 78.82 80.56 80.01 79.23 80.12 82.54 ↑1.98

PreactResNet18 76.05 77.41 78.79 77.03 78.20 78.01 78.77 78.34 78.12 78.87 78.01 79.03 79.83 ↑0.80
PreactResNet50 77.74 78.26 79.12 78.48 79.15 79.15 79.57 79.59 80.12 79.77 78.96 80.10 81.08 ↑0.96
MobileNetV1 67.82 67.55 71.78 67.73 69.42 71.33 71.57 70.78 71.39 71.45 70.67 71.23 71.90 ↑0.12

Table 1: Top-1 accuracy (%) on CIFAR100 across a number of distillation methods. Boldface marks the best performing accuracy. The teacher
model of all knowledge distillation methods is ResNeXt101-8, which the accuracy is 83.78 %.

Model Baseline SD [17] CS-KD [9] PS-KD [10] CORSD

ResNet18 69.57 70.51 70.39 70.59 71.02 ↑0.43

ResNeXt50-4 77.62 78.47 78.35 78.76 79.13 ↑0.37

WideResNet50-2 78.47 79.02 78.76 78.91 79.45 ↑0.43

Table 2: Top-1 accuracy (%) on ImageNet across several self distilla-
tion based methods. Boldface marks the best performing accuracy.

Model Baseline RKD [11] CORSD

ResNet18 73.72 75.78 77.30 ↑1.52
ResNet50 74.02 76.80 78.33 ↑1.53

ResNeXt50-4 74.20 77.32 78.92 ↑1.60
WideResNet50-2 74.57 77.42 78.97 ↑1.55

SEResNet18 73.79 77.17 78.71 ↑1.54
PreactResNet18 73.02 75.61 77.12 ↑1.51

Table 3: Top-1 accuracy (%) on CUB-200-2011. Boldface marks the
best performing accuracy. The teacher model of RKD is ResNeXt101-
8, which accuracy is 79.12%.

shallow layers to approximate the corresponding relation at
the deepest layer. Therefore, more knowledge of inter-class
and intra-class information are distilled to shallow layers and
thus the whole neural network learns more and better.

2.2. Auxiliary Classifier Training

We propose auxiliary classifiers to help the relation networks
further capture class-oriented relation that are beneficial to clas-
sification task. Our designed positive and negative auxiliary
classifiers are both comprised of a single FC layer as the clas-
sification head. Similar to the relation networks, the auxiliary
classifiers are depth-dependent, which can be parameterized
with ξip for the positive classifier and ξin for the negative at the
ith block. Let Zi

p and Zi
n be the projected positive and nega-

tive pair features after FPL gRN in relation networks. Then,
Zi
p and Zi

n are separately fed into the positive and negative
auxiliary classifiers φAC

p and φAC
n for auxiliary classification

task training. Because we train the features after FPL through
auxiliary classifiers, we can get more class-oriented features.
When these features are fed into RIB for relation extraction,
they can help RIB capture more class-oriented relation, that is,
more inter- and intra- class relation.

BL

ResBlock1

BL

+RN

ResBlock2 ResBlock3 ResBlock4

BL

+RN

+AC

Fig. 2: Visualization of feature distribution at different depths. BL
represents baseline training, RN indicates relation network training
and AC stands for auxiliary classifier training. Recommended zoom
in for better view.

Positive Auxiliary Classifier For the positive projected
feature Zi

p, the positive auxiliary classifier loss LPAC is com-
posed of two components, the positive auxiliary task loss
LPAT and positive logit distillation loss LPLD. LPAT is
utilized to encourage Zi

p to perform the classification task,
which can be formulated as:

LPAT = γp(1− λ)

k∑
i=1

LCE

(
φAC
p (Zi

p; ξip), yp
)
, (3)

where γp, λ are hyper-parameters and LCE is the Cross En-
tropy and yp denotes the label of the positive pair Xp =
(xo, xp) which is same as the label of image xo or xp. Thus,
we can get more class-oriented feature representation of Zi

p.
Besides, the positive logit distillation loss LPLD is designed to
advance the training of the positive auxiliary classifier, which
can be written as:

LPLD = γpλ

k−1∑
i=1

DKL

(
φAC
p (Zi

p; ξip), φAC
p (Zk

p ; ξkp )
)
. (4)

where DKL represents the KL divergence.
Negative Auxiliary Classifier Similarly for Zi

n, the neg-
ative auxiliary classifier loss LNAC is also two-fold, i.e.,
the negative auxiliary task loss LNAT and negative logit
distillation loss LNLD. LNAT is utilized to encourage
the Zi

n to represent more discriminated inter-class fea-



BL X X X X X X

+RD 5 X 5 5 5 5
+RN 5 5 X X 5 X
+AC 5 5 5 X 5 X
+LD 5 5 5 5 X X

Acc. 77.1 77.9 79.1 81.0 77.6 81.1

Table 4: Ablation study of Top-1 ac-
curacy (%) with ResNet18 on the CI-
FAR100 dataset.
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Fig. 3: Sensitivity study of hyper-parameters with ResNet18 on the CIFAR100 dataset. Recom-
mended zoom in for better view.

tures: LNAT = γn(1 − λ)
∑k

i=1 LCE

(
φAC
n (Zi

n; ξin), y∗n
)
,

where γn is the hyper-parameter and y∗n denotes a soft
label of the negative pair Xn = (xo, xn). This soft la-
bel can be written as y∗n = 0.5yo + 0.5yn, where yo
and yn are the labels of image xo and xn. Similarly,
we design the negative logit distillation loss LNLD to
promote the training of the negative auxiliary classifier:
LNLD = γnλ

∑k−1
i=1 DKL

(
φAC
n (Zi

n; ξin), φAC
n (Zk

n; ξkn)
)
.

Assisted by the negative auxiliary classifiers, the relation
networks can obtain more class-oriented features, and then
make use of the discriminated features for better relation
modeling, that is class-oriented relation.

Besides the feature’s relation alignments, we propose
logit distributions calibration to further reinforce inter-class
and intra-class relation of the backbone logits, that is mini-
mized intra-class relation and maximized inter-class relation:
Llogit = σ(ψRN (F̃p; η) − ψRN (F̃n; η)) where σ is the
hyper-parameter, F̃p, F̃n denotes the stacked positive/negative
backbone logit.

3. EXPERIMENTS

The experiments are conducted with six different kinds of
models, including ResNet [1], PreActResNet [18], SENet [19],
ResNeXt [20], WideResNet [21], MobileNetV1 [22], and are
evaluated on three popular datasets, including CIFAR [23],
ImageNet [24] and CUB-200-2011 [25]. Eleven kinds of dis-
tillation methods are used for comparison, i.e. KD [6], SD [17].
The baseline represents the model trained from scratch without
any distillation. Across all models in Table 1, the average train-
ing time and memory of CORSD is about 152% and 163% in-
creasement to baseline. Take ResNet18 trained on CIFAR100
as example, the training time of CORSD and baseline is 4.3h
and 2.6h, and the training memory of CORSD and baseline is
2.4GB and 1.4GB. Overall, the training overhead of CORSD
is acceptable and can be handled by commercial GPU.

Experimental Results Table 1 shows the test accuracy of
CORSD and other distillation methods on CIFAR100. We can
conclude that CORSD brings significant accuracy boost com-
pared to baseline and other competing methods. Specifically,
CORSD surpasses SD by a large margin. On average, 1.09%
higher accuracy can be observed on CIFAR100. The classi-
fication accuracy on ImageNet is shown in Table 2. CORSD
reveals the superiority compared with other methods. The

classification results on CUB-200-2011 is shown in Table 3.
CORSD leads to 1.54% superiority on average across all mod-
els than RKD, ranging from 1.51% for PreactResNet18 to
1.60% for ResNeXt50-4. In conclusion, our proposed CORSD
achieves SOTA and achieves consistent and significant accu-
racy improvement on different neural networks and datasets
compared with other distillation methods.

Visualization In order to have a better understanding
of the enhancement of inter-class and intra-class relation of
CORSD, we visualize the distributions of samples in feature
space at different depths. As depicted in Figure 2, t-SNE
visualizations [26] with ResNeXt101-8 trained on CIFAR100
are conducted. When we successively add relation network
training and auxiliary classifier training to the baseline, the
performance of each block to cluster samples in feature space
are much more remarkable, which can help the deep neural
network to better classify samples.

Ablation Study and Sensitivity Study As shown in Ta-
ble 4, we can observe that relation network training (RN),
auxiliary classifier training (AC) and logit distribution calibra-
tion (LD) in our method has its individual effectiveness and
they can be utilized together to achieve better performance
than baseline (BL) as well as relation self distillation (RD)
using handcrafted function L2 norm for relation extraction
without our proposed relation network. The sensitivity study
of each hyper-parameter is shown in Figure 3. Since the values
of different losses vary in one order of magnitude at most,
the values of hyper-parameters for different losses differ from
10−1 to 10−2 for the loss balancing. It can be observed that
our method is robust to the choice of hyper-parameters and
has consistent accuracy boost to other SOTA method PS-KD,
which the accuracy is 79.9%. In this paper, we adopt the best
setting (α = β = σ = 0.01, γp = 0.2, γn = 0.05, λ = 0.8)
for all experiments.

4. CONCLUSIONS

In this work, we propose a novel training framework named
CORSD for performance boosting of models on classification
task. The trainable relation networks and auxiliary classifiers
are designed to capture and reinforce the relation of structured
input, taking full advantage of inter-class contrastiveness and
intra-class similarity, which conspicuously bring benefits to
classification performance.



5. REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
CVPR, 2016.

[2] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun, “Faster R-CNN: towards real-time object detection
with region proposal networks,” in NIPS, 2015.

[3] Song Han, Huizi Mao, and William J. Dally, “Deep
compression: Compressing deep neural network with
pruning, trained quantization and huffman coding,” in
ICLR, 2016.

[4] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi, “Xnor-net: Imagenet classification
using binary convolutional neural networks,” in ECCV,
2016.

[5] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio,
“Fitnets: Hints for thin deep nets,” in ICLR, 2015.

[6] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean,
“Distilling the knowledge in a neural network,” CoRR,
vol. abs/1503.02531, 2015.

[7] Li Yuan, Francis E. H. Tay, Guilin Li, Tao Wang, and
Jiashi Feng, “Revisiting knowledge distillation via label
smoothing regularization,” in CVPR, 2020.

[8] Tommaso Furlanello, Zachary Lipton, Michael Tschan-
nen, Laurent Itti, and Anima Anandkumar, “Born again
neural networks,” in ICML, 2018.

[9] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin,
“Regularizing class-wise predictions via self-knowledge
distillation,” in CVPR. 2020, pp. 13873–13882, Com-
puter Vision Foundation / IEEE.

[10] Kyungyul Kim, Byeongmoon Ji, Doyoung Yoon, and
Sangheum Hwang, “Self-knowledge distillation with
progressive refinement of targets,” in ICCV. 2021, pp.
6547–6556, IEEE.

[11] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho,
“Relational knowledge distillation,” in CVPR, 2019.

[12] Frederick Tung and Greg Mori, “Similarity-preserving
knowledge distillation,” in ICCV, 2019.

[13] Florian Schroff, Dmitry Kalenichenko, and James
Philbin, “Facenet: A unified embedding for face recog-
nition and clustering,” in CVPR, 2015.

[14] Ying Zhang, Tao Xiang, Timothy M. Hospedales, and
Huchuan Lu, “Deep mutual learning,” in CVPR, 2018.

[15] Sergey Zagoruyko and Nikos Komodakis, “Paying more
attention to attention: Improving the performance of
convolutional neural networks via attention transfer,” in
ICLR, 2017.

[16] Baoyun Peng, Xiao Jin, Dongsheng Li, Shunfeng Zhou,
Yichao Wu, Jiaheng Liu, Zhaoning Zhang, and Yu Liu,
“Correlation congruence for knowledge distillation,” in
ICCV, 2019.

[17] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma, “Self-
distillation: Towards efficient and compact neural net-
works,” TPAMI, 2021.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Identity mappings in deep residual networks,” in
ECCV, 2016.

[19] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua
Wu, “Squeeze-and-excitation networks,” IEEE Trans.
Pattern Anal. Mach. Intell., 2020.

[20] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He, “Aggregated residual transformations
for deep neural networks,” in CVPR, 2017.

[21] Sergey Zagoruyko and Nikos Komodakis, “Wide residual
networks,” in BMVC, 2016.

[22] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applica-
tions,” CoRR, vol. abs/1704.04861, 2017.

[23] Alex Krizhevsky and Geoffrey Hinton, “Learning multi-
ple layers of features from tiny images,” 2009, Technical
report .

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li, “Imagenet: A large-scale hierarchical
image database,” in CVPR, 2009.

[25] Catherine Wah, Steve Branson, Peter Welinder, Pietro
Perona, and Serge Belongie, “The caltech-ucsd birds-
200-2011 dataset,” 2011.

[26] Laurens Van der Maaten and Geoffrey Hinton, “Visual-
izing data using t-sne.,” JMLR, vol. 9, no. 11, 2008.


	1  Introduction
	2  Methodology
	2.1  Relation Network Training
	2.2  Auxiliary Classifier Training

	3  Experiments
	4  Conclusions
	5  References

