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ABSTRACT
In this paper, we propose a novel self-distillation method for
fake speech detection (FSD), which can significantly improve
the performance of FSD without increasing the model com-
plexity. For FSD, some fine-grained information is very im-
portant, such as spectrogram defects, mute segments, and so
on, which are often perceived by shallow networks. However,
shallow networks have much noise, which can not capture this
very well. To address this problem, we propose using the
deepest network instruct shallow network for enhancing shal-
low networks. Specifically, the networks of FSD are divided
into several segments, the deepest network being used as the
teacher model, and all shallow networks become multiple stu-
dent models by adding classifiers. Meanwhile, the distillation
path between the deepest network feature and shallow net-
work features is used to reduce the feature difference. A se-
ries of experimental results on the ASVspoof 2019 LA and
PA datasets show the effectiveness of the proposed method,
with significant improvements compared to the baseline.

Index Terms— Fake speech detection, self-distillation,
automatic speaker verification, ASVspoof

1. INTRODUCTION

With the rise of biometrics, automatic speaker verification
(ASV) has also started to be widely used. However, the devel-
opment of synthetic speech technology seriously threatens the
security of ASV systems. The main attack types for ASV sys-
tems are audio replay, text-to-speech (TTS), and voice conver-
sion (VC). Therefore, a series of fake speech detection (FSD)
challenges are used to improve the security of ASV systems.

The research of FSD revolves around finding discrimi-
nately features and designing robust networks. The front-end
features mainly are raw waveforms [1, 2] , linear frequency
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cepstral coefficients (LFCC), log power spectrogram (LPS),
and so on. For different front-end features, researchers have
proposed a series of convolutional neural network modeling
methods. Most of the networks are based on ResNet, LCNN
[3], and graph networks. To further improve the model per-
formance, researchers introduced attention mechanisms into
different networks. Ling et al. [4] proposed an attention-
based convolutional neural network for the FSD task, authors
designed a frequency attention block and a channel atten-
tion block to focus the discriminative information of the fea-
tures. In [5], they first time applied graph attention (GAT)
networks to FSD tasks to further analyze the relationship be-
tween adjacent subbands in spectral features. Jung et al. [6]
proposed a GAT-based architecture using a heterogeneous at-
tention mechanism and stack nodes to integrate temporal and
spectral domains. Zhang et al. [7] used the squeeze and ex-
citation (SE) network for FSD, which is the SE part for com-
puting global channel attention weights. In addition, efficient
channel attention (ECA) [8] is proposed to solve the problem
of information loss due to SE block dimensionality reduction,
which is widely used in other fields.

In addition, self-distillation as popular methods has
gained good performance in many fields. In [9], the authors
proposed an attention-based feature self-distillation method,
which can utilize more high-level information to improve
the performance of automatic speech recognition. Liu et al.
[10] designed a feature-enhanced self-distillation method for
speaker verification, which achieved good performance. Ge
et al. [11] proposed an integrated propagation of knowledge
form to design a self-distillation framework, which is very
effective for image classification tasks.

In this paper, we propose a novel self-distillation approach
for FSD. Many studies show that the shallow feature of voice
is important for FSD. In [7], the authors find that mute seg-
ments of voices affect the performance of FSD seriously. Fur-
ther, Deng et al. [12] utilize shallow feature information by
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Fig. 1. The proposed self-distillation framework is based on SENet and ECANet networks. The framework is divided into four
blocks and each block is set with a classifier (AngleLinear, AL). Note: The additional classifiers can all be removed during
evaluation and thus do not increase the model load.

designing simple classifiers, such as spectrum defects, mute
segments, and so on. While shallow networks are sensitive
to this kind of information, the capture ability is not well as
deep networks. To solve this problem, we propose a self-
distillation framework that the deepest network instructs shal-
low networks, which can further strengthen shallow networks.
Specifically, during training, we add classifiers as multiple
student models for all shallow networks and set the deepest
network as the teacher model. Based on the prediction results,
the teacher model instructs the student model to transform the
deepest knowledge into all shallow networks. Meanwhile, to
reduce the feature difference between the shallow and deepest
networks, we also build self-distillation models in the feature
dimension. It is worth noting that the classifiers in all shallow
layers can be removed during inference, thus causing no ad-
ditional computational and model complexity. To validate the
effectiveness of the proposed approach, we used the ECANet
and SENet networks as the baseline and the LA and PA from
the ASVspoof 2019 challenge as the dataset. Compared to
the baseline, the performance of the system is significantly
improved after using self-distillation.

2. THE PROPOSED SELF-DISTILLATION METHOD

2.1. Self-distillation

In this section, we propose a self-distillation method as shown
in Fig.1. Specifically, Inspired by [13], we divide it into four
segments based on the model architecture. In this paper, we
divide the model into four blocks, and the block is SE block
or ECA block. Then, we set a classifier after each block, and
we use AngleLinear to obtain the prediction results of each
layer. Note that these extra classifiers are only used in training
and do not increase the load during inference. In the training
phase, we use the fourth layer of the network as the teacher

model and the first three layers as the student model. The
deep network knowledge is transformed to the shallow layer
in both feature and prediction dimensions.

To make full use of the network information, three losses
during the training process are introduced:

• Hard loss: The A-softmax function is used to calculate
the loss of the labels and the fourth layer classifier. This
is calculated using the labels of the training dataset and
the output from the Anglelinear classifier, which is used
to fully extract the hidden knowledge in the training
dataset.

• Feature loss: The L2 function is used to compute the
feature mapping between the fourth layer network and
each shallow layer network. This can introduce non-
explicit knowledge of the deepest features into the shal-
low features so that their shallow networks can match
better with the deeper networks when predicting.

• Soft loss: The KL divergence function is used to cal-
culate the soft loss in the teacher-student model. The
deepest network output is used as the teacher model and
several shallow network outputs are used as the student
model. The difference between the distributions of the
two outputs is calculated, which can guide the shallow
network to learn more.

2.2. Training Methods

When training with the self-distillation method, the loss has
three components. First, we compute the hard loss of the
deepest network and labels:

Lhard = A−softmax (p
n, L) (1)

where pn is the deepest output of the network, in this pa-
per, we set the n is 4. L is the label of the training data set,



Table 1. EER and t-DCF results for different architectures based on the ASVspoof 2019 LA and PA dataset. SD indicates that
the self-distillation method is used.

LA dataset

Model ECANet9 ECANet18 ECANet34 ECANet50 SENet9 SENet18 SENet34 SENet50

EER baseline 1.48 1.18 1.44 1.87 1.97 1.52 1.23 1.83
SD 1.22 0.88 1.14 1.09 1.23 1.37 1.08 1.00

t-DCF baseline 0.0493 0.0378 0.0460 0.0605 0.0610 0.0497 0.0358 0.0536
SD 0.0376 0.0295 0.0334 0.0318 0.0388 0.0417 0.0347 0.0309

PA dataset

Model ECANet9 ECANet18 ECANet34 ECANet50 SENet9 SENet18 SENet34 SENet50

EER baseline 0.83 0.95 0.88 0.90 0.97 0.93 1.14 0.82
SD 0.74 0.83 0.70 0.82 0.85 0.87 0.65 0.79

t-DCF baseline 0.0221 0.0284 0.0255 0.0262 0.0269 0.0266 0.0334 0.0228
SD 0.0199 0.0219 0.0208 0.0222 0.0232 0.0239 0.0174 0.0219

Table 2. The ECANet and SENet model architecture and
configuration. Dimensions refer to (channels, frequency, and
time). Batch normalization (BN) and Rectified Linear Unit
(ReLU). ECA and SE are the efficient channel attention block
and the squeeze and excitation block, respectively.

Layer Input: 27000 samples Output shape
Front-end F0 subband (45,600)(F,T)

Post-processing
Add channel (1,45,600)
Conv2D 1 (16,45,600)

BN & ReLU

Block1 c1 ×

 Conv2D 3
Conv2D 3
ECA or SE

 (32,45,600)

Block2 c2 ×

 Conv2D 3
Conv2D 3
ECA or SE

 (64,23,300)

Block3 c3 ×

 Conv2D 3
Conv2D 3
ECA or SE

 (128,12,150)

Block4 c4 ×

 Conv2D 3
Conv2D 3
ECA or SE

 (256,6,75)

Output Avgpool2D(1,1) (256,1,1)
AngleLinear 2

and A−softmax denotes the A-softmax function. Lhard is
the hard loss.

Soft loss is used for knowledge distillation of the shallow
and deep networks, and we calculate KL divergence using
each shallow and deepest network.

Lsoft =

n−1∑
i

KL
(
pi, pn

)
(2)

KL denotes the KL divergence function and pi is the out-
put of each layer of the network after the Angellinear classi-
fier. Lsoft is the final soft loss.

The feature loss is used to balance the difference between
the shallow and deepest networks, which can be fed back to
the classification output of the shallow network to facilitate
the soft loss fit.

Lfeature =

n−1∑
i

L2
(
F i,Fn

)
(3)

F i is the output feature of each layer, andFn is the output
feature of the deepest layer. L2 is the L2 loss function, and
Lfeature is the final feature loss.

L = α ∗ Lhard + (1− α) ∗ Lsoft + β ∗ Lfeature (4)

The loss at training consists of the following three com-
ponents, α and β are hyperparameters to balance the three
sources of loss. L is the final loss.

3. EXPERIMENTS AND RESULTS

3.1. Datasets

We trained and evaluated models on the ASVspoof 2019 LA
and PA datasets. The LA set includes three types of spoof-
ing attacks (TTS, VS, and audio replay), which are divided
into 19 attack algorithms (A01-A19). The PA set includes
only replay attacks, and there are 27 replay attacks in differ-
ent acoustic environments. In this paper, EER and the mini-
mum normalized tandem detection cost function (min t-DCF)
are used as evaluation metrics for assessing the performance
of different systems.

3.2. Training setup and baseline

Front-end features: Inspired by [20], we use the F0 subband
as our input features. Firstly, we extract the full frequency
band of LPS and use the window function as Blackman’s
Short Time Fourier Transform (STFT), setting the window
length and hop length as 1728 and 130 respectively. we fix
the frame number as 600 and get the LPS to feature 865×600.
Finally, we take the first 45 dimensions of the frequency and
finally get the front-end F0 subband feature size of 45×600.

Back-end classifier: As shown in Table 2, we use SENet
and ECANet as deep neural network classifiers. where the
c1 − c4 vectors corresponding to the 9, 18, 34 layers are
(1, 1, 1, 1), (2, 2, 2, 2), and (3, 4, 6, 3), respectively. The 50-
layer network is set to three convolutions in the block, with



Table 3. Comparison of our self-distillation system with other known single systems.
LA dataset PA dataset

Systems Front-end EER(%) t-DCF Systems Front-end EER(%) t-DCF
AASIST [6] Raw waveform 0.83 0.0275 T28 [14] - 0.52 0.1470

ECANet18(SD) Ours F0 subband 0.88 0.0295 SENet34(SD) Ours F0 subband 0.65 0.0174
SENet50(SD) Ours F0 subband 1.00 0.0309 ECANet34(SD) Ours F0 subband 0.70 0.0208
RawGAT-ST [15] Raw waveform 1.06 0.0340 SE-Res2Net50 [16] Spec 0.74 0.0207

SENet34(SD) Ours F0 subband 1.08 0.0347 T10 [14] - 1.08 0.1598
FFT-L-SENet [7] LPS 1.14 0.0368 T45 [14] - 1.23 0.1610

MCG-Res2Net50 [17] CQT 1.78 0.0520 T44 [14] - 1.29 0.1666
Resnet18-OC-softmax [18] LFCC 2.19 0.0590 T53 [14] - 1.66 0.1729

ResNet18-GAT-T [5] LFB 4.71 0.0894 Capsule [19] LFCC 2.76 0.0730

convolution kernels of 1,3,1. The rest is the same as the 34-
layer network. For training, we use Adam as the optimizer
with parameters β1 = 0.9, β2 = 0.98, ε = 10−9 and weight
decay 10−4. The number of the epoch is 32. The two hyper-
parameters α and β are set to 0.7 and 0.3, respectively.

3.3. Experiment results on LA dataset

Table 1 shows the EER and t-DCF of the baseline and self-
distillation systems for the ASVspoof 2019 LA dataset. The
“SD” denotes self-distillation. According to Table 1, it can
be seen that our self-distillation method significantly out-
performs the baseline system. In addition, we can observe
several interesting phenomena. First, the baseline system
“ECANet18” has the best performance with an EER of
1.18%. Even so, the self-distillation method can improve
it by 25%. Second, the performance of the different net-
work architectures decreases significantly as the network gets
deeper. For example, the EER of the baseline “SENet50” is
1.83%, and the EER of its self-distillation is 1.00%, which is
a 45% improvement. Self-distillation effectively reduces the
performance degradation of the FSD due to depth and makes
its performance smoother for different network depths. Ta-
ble 3 shows the performance of the most recently known
SOTA single system, and our best system is ranked second.
In general, the self-distillation method has the effect of fully
exploiting the information of different levels of the network.
Further, this method has strong generality and improves for
different architectures at different depths.

3.4. Experiment results on PA dataset

Table 1 shows the EER and t-DCF of the baseline and the
self-distillation system for the ASVspoof 2019 PA dataset.
according to Table 1, it can be seen that the self-distillation
system outperforms the baseline. The EER of the baseline
“SENet34” is 1.14%, which is the worst performance in the
overall baseline. However, the “SENet34(SD)” system could
obtain an EER of 0.65%, making it the best-performing sys-
tem. This may be because the shallow network contains more

unexplored information, and thus the self-distillation system
has a teacher for guidance, which allows shallow networks to
mine more fine-grained information as well. In addition, Ta-
ble 3 compares the Top systems on the PA dataset, and our
method can also get the second one. This indicates that the
self-distillation method is very effective. Further, our method
can also be adapted to different datasets.

4. CONCLUSIONS

In this paper, we propose a novel self-distillation method for
FSD tasks. This can further improve the performance of FSD
without increasing the load and has generality for networks
of different architectures. Specifically, we add classifiers be-
hind the shallow network to build interaction with the deep-
est network in both feature and prediction dimensions, which
enhances shallow networks’ ability that captures detailed dis-
criminately information. The feature distillation aims to re-
duce the difference between deep and shallow features, and
the distillation of the prediction dimension is to fully exploit
the information in each layer of the network to further opti-
mize the network. We use different architectures of ECANet
and SENet, and our experimental results on ASVspoof 2019
LA and PA datasets validate the effectiveness and generality
of our approach, significantly improving the performance of
the baseline. In the future, we will work on building more
low-parameter and highly robust FSD systems.
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