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ABSTRACT

Extracting building footprints from remote sensing images has been
attracting extensive attention recently. Dominant approaches address
this challenging problem by generating vectorized building masks
with cumbersome refinement stages, which limits the application of
such methods. In this paper, we introduce a new refinement-free
and end-to-end building footprint extraction method, which is con-
ceptually intuitive, simple, and effective. Our method, termed as
BiSVP, represents a building instance with ordered vertices and for-
mulates the building footprint extraction as predicting the serialized
vertices directly in a bidirectional fashion. Moreover, we propose
a cross-scale feature fusion (CSFF) module to facilitate high res-
olution and rich semantic feature learning, which is essential for
the dense building vertex prediction task. Without bells and whis-
tles, our BiSVP outperforms state-of-the-art methods by consider-
able margins on three building instance segmentation benchmarks,
clearly demonstrating its superiority. The code and datasets will be
made public available.

Index Terms— building footprint extraction, cross-scale
feature fusion, bidirectional prediction, attention mechanism

1. INTRODUCTION

Extracting building footprints from remote sensing images
has been receiving increasing attention due to its great po-
tential value in many applications, such as urban change de-
tection, city modeling, and cartography, which require precise
geometric contours. Most prevalent methods address this task
by vectorizing building segmentation masks, heavily relying
on the performance of segmentation methods. Another line of
works directly predict the order-agnostic vertex set, however,
they require additional information to determine the vertex’s
order. In a nutshell, mainstream approaches tend to have com-
plex model structures and tedious inference processes.

To tackle the above issues, we propose a Bidirectional
Serialized Vertex Prediction (BiSVP) framework to predict
the ordered sequence of building vertices. The method is
refinement-free and can be trained end-to-endly. Consider-
ing that a polygon can be represented with sequential vertices
in clockwise or counterclockwise direction, our BiSVP repre-
sents the building contour with ordered vertices and predicts
building vertices sequentially in a bidirectional fashion. The

predictions from two directions are then combined to produce
the final results. In this way, we manage to leverage the bidi-
rectional information of building polygons to generate accu-
rate building footprints. Besides, an attention mechanism is
integrated into our BiSVP to enhance the ability of predicting
long vertex sequences of complex buildings. Furthermore, we
propose a cross-scale feature fusion (CSFF) module to obtain
building features with high resolution and rich semantic in-
formation.

Our BiSVP can be seamlessly incorporated into existing
object detectors (e.g., Faster RCNN [1]]). Experimental re-
sults show that our method significantly outperforms state-
of-the-art approaches on three building instance segmenta-
tion benchmarks. In short, the contributions are summarized
as follows: First, we propose Bidirectional Serialized Ver-
tex Prediction, a simple yet effective end-to-end framework
to extract building footprints. Second, our method predicts
the serialized vertices directly in a bidirectional fashion and
proposes the cross-scale feature fusion module to enhance
the building feature learning. Third, our method outperforms
state-of-the-art approaches by considerable margins on three
building instance segmentation benchmarks.

2. RELATED WORK

In this section, we review literature closely related to our re-
search.

2.1. Building instance segmentation

Early works address building footprint extraction as a pixel-
wise classification problem. To improve the segmentation
quality, multi-source information, such as digital surface data
and LIDAR data, are incorporated to obtain rich features
[2, 3]. In the era of deep learning, numerous instance-
level building segmentation methodologies have emerged
[4} 15} 16l [7]], which benefit a lot from instance segmentation
networks. However, these methods provide building masks in
raster format, which can not meet application needs.

2.2. Polygonal building segmentation

Polygonal building segmentation approaches extract building
footprints in a vector format. Most current methods [8, (9}
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Fig. 1. Overview of our proposed BiSVP. (a) BiSVP is a refinement-free and end-to-end framework. (b) Cross-scale feature
fusion (CSFF) module is introduced to facilitate high resolution and rich semantic feature learning. (c) Attentional bidirectional
building polygon (A-Bi-BP) prediction module is proposed to predict the serialized vertices in a bidirectional fashion directly.

10, [11} [12] vectorize building segmentation masks by post-
processing. Girard et al. [13] predicts raster segmentation
and frame fields to generate building polygons. These meth-
ods heavily rely on building segmentation masks and conse-
quently generate irregular building polygons.

Another mainstream algorithms focus on directly predict-
ing building vertices from the feature maps. Li et al. [14]]
and Zhu et al. [15] determine the building vertex’s order in
a geometric way. PolyWorld [16] assigns the vertex connec-
tions for building vertices by solving a differentiable optimal
transport problem. These methods decompose the polygo-
nal building segmentation problem into multiple tasks and
require complex polygon constraints, normally bringing in-
tensive computation burden and leading to poor generaliza-
tion. To determine the vertex’s order, PolyRNN [17] and
PolyRNN++ [18] apply a CNN-RNN architecture to directly
extract vertex sequences. Following this simple idea, many
attempts [[19,120] have been made and achieved promising re-
sults. However, these methods are sensitive to inevitable oc-
clusions and shadows, which may be challenging to extract
complex building vertices.

3. METHOD

The overall architecture of BiSVP is shown in Figure [I] in-
cluding a feature extraction network, a cross-scale feature fu-
sion (CSFF) module, and an attentional bidirectional building

polygon (A-Bi-BP) prediction module.
3.1. Feature Extraction Network

Our method can be seamlessly embedded into any polygo-
nal models. To evaluate the effectiveness of it, we build a
model on top of Mask RCNN because of its popularity and
excellence performance. To be specific, BiSVP adopts a deep
CNN backbone to extract multi-scale features F. To improve
multi-scale building segmentation, we apply a feature pyra-
mid network (FPN) [21] to fuse feature maps of different res-
olutions {Ps, P3, P4, P5,Ps}. Then, a region proposal net-
work (RPN) [lL] proposes candidate building bounding boxes
from the multi-scale features.

3.2. Cross-scale Feature Fusion

As depicted in Figure 1| (b), CSFF adopts the transformer-
based architecture to obtain the high resolution and rich se-
mantic building representations, which are crucial for the sub-
sequent vertex sequence prediction. Especially, CSFF primar-
ily employs the cross attention module to aggregate feature
maps of different resolutions in a coarse to fine manner, which
can automatically focus on building boundaries.

Given an image I € R3*H*W_CSFF firstly obtains
the building queries B, from the feature map P, and the
positional encoding. Then, CSFF takes in feature maps
Ps3, P4, Ps, Pg, which embeds positional encoding with the
corresponding feature map to localize building instances and



boundaries in the following cross attention. The cross atten-
tion module aggregates information between building queries
B, and feature maps P; (i € [3,4,5, 6]). Besides, the residual
connection and layer normalization are also applied after the
attention and FFN modules. The output of the CSFF module
is defined as:
k
B = FFN(softmax(BqPi )- PY) (1)
Vd

where B, is the building queries from the feature map P2, and
FFN is the fully connected feed-forward network. PF and PY
represent key and value from feature map P; (i € [3,4,5,6])
from FPN.

3.3. Attentional bidirectional building polygon

As illustrated in Figure|l|(c), A-Bi-BP module firstly takes in
the building feature B to get the first vertex. Then, it outputs
building vertices in two directions (i.e., clockwise and coun-
terclockwise). In the following, we take step r as an example
to introduce the attentional building polygon (A-BP) predic-
tion, which is a branch of A-Bi-BP module.

Firstly, A-BP module outputs the hidden state h; by tak-
ing in the building feature B, the previous predicted vertices
Y12 and y;_1, and the predicted first vertex yo. Then, a gaus-
sian constrained attention [22]] module integrating the hidden
state h; and the building feature B is applied to calculate the
attention weight o;. Subsequently, the coefficient is calcu-
lated by the element-wise product of the attention weight o
and the building feature B. Finally, the next vertex y; or the
end signal (EOS) is captured from the concatenation of the
coefficient and the hidden state h;. The step t of the A-BP is
defined as:

(htv Ct) = LSTM(B7 Yt—2,Yt—1, y0)7

2
y¢ = softmax(Why; ap © B] + b) @

where oy is attng.(B, ht), a; © B is the element-wise product
of the attention weights and B, and [;] is the concatenation
operation. W and b are the trainable parameters and y; is
obtained by softmax operation.

3.4. Training objective

BiSVP loss includes binary classification loss L;s, bounding
box regression loss L4, and building vertex sequence pre-
diction loss L,.,. This paper adopts the binary cross entropy
loss and L1 loss to calculate L and L,..4, respectively. As
for L,.,, we calculate the average loss of the cross entropy
loss between predicted polygons of two directions with the
corresponding ground truth respectively. The total loss is de-
fined as follows:

Lyer = (Lce (predpa gt) + Lee (pred;, gtc))/2'07
L=1Lys+ Lreg + Lyer-

where pred,, and gt (pred;, and gt°) represent the predicted
building polygon and ground truth in clockwise (counter-
clockwise).

3

4. EXPERIMENTS
4.1. Datasets

The proposed method is evaluated on three building datasets:
(1) SpaceNet (LasVegas) [23] consists of over 3,800 im-
ages of size 650x650 pixels. (2) SM-Building [24] contains
109 images with a resolution ranging from 2000x2000 to
5000x5000. We crop them into 512 x 512 sub-images with
an overlap of 64 pixels and then split it by 7:3 for training
and testing. (3) CNData is a very challenging dataset, in-
cluding 4200 images with a size of 512x512. The images
are captured over different provinces of China and consist of
residential, rural and industrial areas, where buildings vary
greatly in size, structure and appearance. Especially in ru-
ral and urban villages, buildings are small and dense. The
dataset has 101430 building instances with polygonal anno-
tations, which is split by 8:1:1 for training, validation and
testing.

4.2. Implementation Details

Our proposed model is trained in an end-to-end manner with
SGD [25]] optimizer. The backbone is a ResNet50 pre-trained
on ImageNet, and we fine-tune it with a smaller initial learn-
ing rate le-5; for the other part of the model, the initial learn-
ing rate is set to le-4. The weight decay is set to 1le-4. The
model is trained for 24 epochs, and we decrease the learn-
ing rate by 10 at the 16-th and 22-th epoch, respectively. We
use MS COCO metrics [26] to evaluate the segmentation re-
sults. Furthermore, F'175 calculated from AP;5 and AR5
is also employed to comprehensively evaluate different meth-
ods, since high accuracy delineation is vital for practical ap-
plications.

4.3. Comparison with State-of-the-arts

Since building footprint extraction is also a instance segmen-
tation task, we compare it with the baseline model Mask R-
CNN [27] and PANet [28]. Furthermore, we also compare
the proposed BiSVP with PolyMapper [19] and the SOTA
method Framefield [[13]] for polygonal building segmentation.
Quantitative Evaluation. Table |l| reports the building seg-
mentation results on three building datasets. As illustrated in
Tablem, F'175 of our method on the three datasets are signifi-
cantly better than the baseline method by 13.34%, 2.93%, and
5.15%; APrs5 are improved by 15.7%, 2.1%, and 4%, which
indicates that our method can extract building footprint pre-
cisely. Besides, the recall metrics are all enhanced by our
approach on three building test datasets, especially, +9.6% in
terms of AR75 on SpaceNet. Moreover, our model outper-
forms the polygonal building segmentation methods by large
margins.

Qualitative Comparison. Figure 2] shows some example re-
sults obtained by our approach. It can be seen that our method
can generate high-quality polygonal building footprints.



Dataset Method AP AP50 AP75 AR AR50 AR75 F175
PANet [28] 46.9 85.1 459 54.6 87.8 60.9 52.35
SpaceNet PolyMapper 51.6 874 59.6 58.3 89.5 68.9 63.91
(LasVegas) FrameField 53.6 84.5 63.1 58.5 87.9 68.8 65.83
Baseline 47.0 85.9 46.4 54.6 88.0 60.5 52.52

BiSVP (ours) 53~2+6.2 87.2+1,3 62.1+15<7 59.3+4.7 89.5+1_5 70-1+9.6 65.86+13,34
PANet [28] 31.3 59.6 28.9 45.8 74.7 48.5 36.22
SM-Buildi PolyMapper 32.0 62.9 30.1 47.5 82.1 51.1 37.88
unlding | prameField 18.4 36.4 16.4 31.0 54.7 31.0 21.45
Baseline 31.5 60.5 29.0 45.9 75.4 48.3 36.24

BiSVP (OU.I'S) 32.7+1.2 63.8+3_3 31.1+2<1 48.7+2.8 83.94,&5 52-9+4.6 39.17+2_93
PANet 35.1 68.8 34.0 47.5 81.3 50.3 40.57
CNData PolyMapper 36.4 70.6 35.7 50.6 86.1 54.6 43.17
FrameField 21.7 40.7 21.2 329 54.9 344 26.23
Baseline 35.1 68.4 33.7 47.7 81.6 50.2 40.33

BiSVP (ours) 379,28 715,31 377,40 | 527,50 883,67 573,71 | 4548515

Table 1. Reuslts on three building test datasets: SpaceNet (LasVegas), SM-Building, and CNData. The best results in each

dataset group are marked in bold.

Fig. 2. Qualitative results. Our method can generate geomet-
ric contours of buildings accurately.

4.4. Ablation Study

We analyze the effectiveness of CSFF module, Bi-BP module,
and the attention mechanism (Attng.) in Bi-BP. In ablation
studies, we add CSFF, Bi-BP, and Attn,. respectively to the
baseline method [27]. The experimental results are present in
Table

Cross-scale feature fusion (CSFF). The performance of the
baseline model decreases on the three building datasets by
12.27%, 2.26%, and 4.73% in the indicator F'15. The results
shown in Table[2]indicate that CSFF module plays a vital role
in aggregating features of different levels.

Bidirectional building polygon (Bi-BP). Table 2] shows that
Bi-BP module can significantly improve the performance on
the three building datasets, which demonstrates that Bi-BP
module can leverage the bidirectional information of the
building polygon. Especially, it improves the baseline by
12.8% in F'175 of SpaceNet (Las Vega), proving the effec-
tiveness of the Bi-BP module.

Attention mechanism. We can observe from Table 2] that the
model with the attention mechanism can achieve surprisingly
good performance. Finally, the proposed BiSVP can improve
the baseline from 52.52%, 36.24%, and 40.33% to 65.86%

Dataset CSFF Bi-BP Attn | Fl5
52.52
v 64.79
v 65.32

65.44
65.86
36.24
38.50
38.58
39.03
39.17
40.33
45.06
43.35
v | 44.80

v v v | 45.48

SpaceNet
(LasVegas)

N

SM-Building v

SN

CNData v

Table 2. Ablation study. ”v"” means adding the correspond-
ing module to the baseline. The last row in each dataset group
is the value of BiSVP. The best result in each dataset group is
marked in bold.

(+13.34%), 39.17% (+2.93%), and 45.48% (+5.15%) in F'15
over three building test datasets, respectively.

5. CONCLUSION

In this paper, we have presented Bidirectional Serialized Ver-
tex Prediction (BiSVP), a new refinement-free and end-to-end
framework to extract building footprints from remote sensing
images. The proposed BiSVP represents the building con-
tour with ordered vertices and predicts the serialized vertices
directly in a bidirectional fashion. Furthermore, BiSVP pro-
poses a cross-scale feature fusion (CSFF) module to fuse fea-
ture maps of different levels, obtaining the building feature
with rich spatial and context information that is essential for
the dense building vertex prediction task. The extensive ex-
periments on three building instance segmentation datasets
demonstrate the superiority of our method in building foot-
print extraction.
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