2211.01180v2 [cs.CL] 10 Apr 2023

arxXiv

M-SPEECHCLIP: LEVERAGING LARGE-SCALE, PRE-TRAINED MODELS FOR
MULTILINGUAL SPEECH TO IMAGE RETRIEVAL

Layne Berry', Yi-Jen Shih?, Hsuan-Fu Wang?, Heng-Jui Chang’, Hung-yi Lee?, and David Harwath'

'University of Texas at Austin
?National Taiwan University
SMIT CSAIL

ABSTRACT

This work investigates the use of large-scale, English-only pre-
trained models (CLIP and HuBERT) for multilingual image-speech
retrieval. For non-English image-speech retrieval, we outperform
the current state-of-the-art performance by a wide margin both when
training separate models for each language, and with a single model
which processes speech in all three languages. We identify key dif-
ferences in model behavior and performance between English and
non-English settings, attributable to the English-only pre-training of
CLIP and HuBERT, and investigate how fine-tuning the pre-trained
models impacts these differences. Finally, we show that our models
can be used for mono- and cross-lingual speech-text retrieval and
cross-lingual speech-speech retrieval, despite never having seen any
parallel speech-text or speech-speech data during training.

Index Terms— visually-grounded speech, multimodal speech
processing, multilingual speech processing, self-supervised learning

1. INTRODUCTION

Language is more than a probability distribution over words or
phonemes—it is produced in context to express semantic informa-
tion. The task of language-image retrieval targets semantic under-
standing by asking models to connect utterances to contexts in a
different modality. This is especially important for low-resource
and unwritten languages, for which limited data exists for training
speech recognition and natural language understanding systems.
The recently-proposed CLIP [1] model was pre-trained on an un-
precedented amount of parallel English image-text data to encode
each modality in a shared semantic embedding space. Speech-
CLIP [2] was then proposed to map HuBERT representations of
English speech into the same embedding space, achieving state-of-
the-art performance on English image-speech retrieval and enabling
zero-shot speech-text retrieval. Here, we investigate the value of
English-only pre-training for non-English speech understanding by
applying the SpeechCLIP [2]] model to non-English image-speech
retrieval. We find that our models beat the prior state-of-the-art for
non-English image-speech retrieval by a wide margin.

We next train multilingual models which can take input text in
any of the three languages investigated here. We experiment with
scaling up these models, and achieve further gains. As with Speech-
CLIP, we show that our models can perform zero-shot transfer to En-
glish speech-text retrieval, even outperforming image-text retrieval
with the image embeddings M-SpeechCLIP used as labels during
training. Finally, we consider the challenging settings of zero-shot
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transfer to cross-lingual speech-text and speech-speech retrieval, set-
ting strong baselines for the former and outperforming prior work for
the latter.

This work demonstrates that large-scale pre-training is highly
effective, even for tasks where both language and modality differ.
We set a new state-of-the-art for non-English image-speech retrieval,
and enable both speech-text and speech-speech retrieval in a cross-
lingual setting without any parallel speech from different languages,
parallel speech and text, or non-English text at all.

2. RELATED WORK

CLIP [1] is an image-text alignment model trained on 400 mil-
lion web-scraped image and English caption pairs—a private dataset
4000x larger than the popular MS-COCO [3] and Visual Genome [4]
and less noisy than the 4x smaller YFCC100M [5]. CLIP-Large
consists of a ViT-L/14 [6] image encoder and a GPT-based [7] text
encoder which map their respective input modalities into a shared
embedding space learned with a contrastive loss. This embedding
space has been shown to transfer well to tasks other than English
image-text alignment. M-CLIP[8]] uses the CLIP text encoder with
English inputs as a teacher model to learn non-English and mul-
tilingual text encoders into the CLIP embedding space, and beat
state-of-the-art image-text retrieval performance on the XTD [9]
dataset of MS-COCO caption translations in 11 languages by an
average of over 12% absolute R@10. SpeechCLIP [2] freezes the
CLIP image encoder and learns to map English spoken captions into
the CLIP embedding space, beating state-of-the-art image-speech
retrieval [10] on the SpokenCOCO [11] and Flickr8k [12]] datasets.
Non-English image-speech retrieval has most frequently been
evaluated on the Places [13] dataset. [14] collected 400k sponta-
neous English spoken captions for Places images. [15] collected
spontaneous Hindi spoken captions for 100k of these images, and
[L6] collected spontaneous Japanese spoken captions for the same
subset of images. [17]], [18], and [19] also investigate non-English
image-speech retrieval, with [19] using transfer learning from En-
glish pre-training on HowTo100M to beat prior state-of-the-art by an
average absolute R@10 of 5.7% for Japanese and 8.1% for Hindi.
[2] showed that encoding English speech into the CLIP embed-
ding space allows speech-text retrieval to be learned without any
speech-text pairs. Visual grounding has also been used to learn to
retrieve speech given a text keyword without seeing any speech-text
pairs during training. [20, |21] investigate English speech retrieval
given an English query word, while [22]] learns to retrieve English
speech given one-word text query in German. [16] used a combina-
tion of cross-lingual and cross-modal loss to learn monolingual en-
coders that can be used for cross-lingual speech-to-speech retrieval.
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3. MODEL DESIGN

3.1. Monolingual Models

Our model architecture is based on that of Parallel SpeechCLIP, in-
troduced in [2]]. Given a batch of n image-caption pairs (I;, .S;) for
i = 1,...,n, we use a frozen CLIP [1] image encoder to gener-
ate an embedding v! for each image I; and train a speech encoder
to produce vectors vf such that v} and vf are similar for ¢ = j
and dissimilar for ¢ # j. Our speech encoder uses a frozen pre-
trained HuBERT [23] model to extract frame-level audio features
fi, .., fx, where k is the number of frames in the audio at S0Hz.
We learn weights w = (w?,...,w') for each of the / HuBERT
layers, which we use to compute the representation for each audio
frame f; from the hidden states h; = (h{, ..., h}) at that frame as
ft = Zi:l w'hi. We then append a learnable [CLS] token to the
beginning of the sequence and pass it to a trainable Transformer En-
coder [24]. The hidden state of the [CLS] token at the last layer
of the Transformer Encoder on input S; is projected to the same
shape as the target v and used as the output encoding v{’. We use
Masked Margin Softmax [25]] as our contrastive loss function in both
retrieval directions, so that for each batch of B speech encodings
vS = (v, ...,v3) and B image encodings v! = (v!,...,v%), our
total loss is £(v,v') = Larars(vS, v+ Lares(v?, v¥), where
L s s with margin 0 is defined as:
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3.2. Multilingual Models

We consider two possible settings: a language-agnostic model iden-
tical to the monolingual models but trained on inputs from multiple
languages, and a language-aware model which learns a [LangID]
token for each language which is appended to the audio feature se-
quence after the [CLS] token. The language-aware model also learns
a separate set of layer weights w© for each language C.

When training multilingual models, individual batches may con-
tain speech from just one language at a time or a mix of speech from

all languages. Since the other pairs in a batch are used as negatives
in the contrastive loss, this choice determines whether distractors are
all in the same language or may be in any language.

Finally, we consider introducing cross-lingual loss terms mod-
eled after [[16]]. At each iteration, we randomly select two languages
C and D and compute embeddings of the image (v') and the spoken
caption for that image in each selected language (v and vP). We
then compute our total loss using six contrastive terms:

E(VI,VC,VD) N+ Lanms(v9, v+
+ LMMS(VD, vh+ @
Laums(vE,vP) + Larms(vP,vE)

=LMMS(VI, v
LMMS (VI, VD)

4. EXPERIMENTS

We train and evaluate our models on Places100k, the 100k image
subset of Places for which spontaneous spoken captions are avail-
able in three languages (English, Hindi, and Japanese). All of our
monolingual models are trained on 2 V100 GPUs, as are our four
multilingual models ablating batch composition and the use of a
[LangID] token. We empirically select 1 layer and 8 attention heads
for our Transformer Encoders. Monolingual models are trained for
25 epochs and take 1 day to finish training, while multilingual mod-
els (which see 3x more training data per epoch) are trained for 15
epochs and take 1.5 days. The batch size used for these experiments
is 256, and the feature extractor is HuBERT-Large.

We additionally conduct two experiments on 8§ V100 GPUs
with a batch size of 72, in order to test more computationally
expensive ablations to our multilingual model. These experi-
ments take longer to converge, so we run them for 25 epochs
(~3 days). The first, which we refer to as “Multi+TrainFeat”,
unfreezes the HuBERT-Large feature extractor, allowing it to be
fine-tuned on our multilingual input data. For the second, which we
call “Multi+TrainFeat+XLL”, we include cross-lingual loss terms.
Since this doubles the number of gradients which must be stored at
each training step, we use a trainable HuUBERT-Base as our feature
extractor for this experiment. This allows the amount of compute
required by the “Multi+TrainFeat” and the “Multi+TrainFeat+XLL”
models to be comparable, and the same batch size, number of GPUs,
and training time to be used for both experiments.

Our learning rates increase linearly from zero to a peak over
the first 10% of iterations and decrease linearly back to zero over
the remaining 90% of iterations. The peak learning rate was set
empirically to 0.001 for English and Japanese monolingual models
and 0.0005 for Hindi monolingual and all multilingual models. The
MMS margin § is set to 0.001 and spoken captions are zero-padded
or truncated as necessary to 15s.

5. PERFORMANCE AND ANALYSIS

5.1. Monolingual Image-Speech Retrieval

We evaluate the quality of the learned speech encoders by measur-
ing their retrieval performance on the Places100k test set of 1000
image-speech pairs. Following prior works [[15, 16} [17, [19], we re-
port Recall@k for k£ = 1,5, 10 in Table|[l} Our models’ improve-
ment over prior work is significantly larger for English than other
languages. Still, for Hindi and Japanese, our models achieve an av-
erage gain of over 7% absolute R@ 10 over the state-of-the-art [19].
Lower recall for Hindi than English and Japanese is in line with prior
work; lower recall for Japanese than English, however, contrasts the



findings of [16] and [17]. This divergence from the trends of prior
work indicates that English-only pre-training biases our models in
favor of English speech.

5.2. Multilingual Image-Speech Retrieval

We evaluate our multilingual models on the same image-speech re-
trieval task, and report results in Table[T} When the feature extrac-
tors are frozen, monolingual models outperform multilingual ones in
monolingual evaluation settings. Our language-aware and language-
agnostic models perform similarly, indicating that providing an ex-
plicit language ID to the model is not necessary. On the other hand,
we find that using mixed-language batches during training produces
much better models than those which only consider distractors in
the same language. This finding holds across both multilingual and
monolingual tests. We therefore select the language-agnostic archi-
tecture and multilingual training batches for our two more computa-
tionally expensive experiments.

Allowing the feature extractor to be fine-tuned leads to siz-
able gains both in monolingual and in mixed-language evaluation
settings, particularly for non-English inputs. Despite using only
a HuBERT-Base feature extractor, the model trained with cross-
lingual loss terms achieves additional gains on Hindi, Japanese, and
mixed-language tests. Improvements from the cross-lingual loss
terms are less pronounced in the monolingual English evaluation
setting, making “Multi+TrainFeat+XLL” our only model to achieve
better scores on the Places100k Japanese test set than the English.

For a multilingual baseline, we consider cascading ASR with
the text-based multilingual M-CLIP [8] model. The English and
Hindi Places datasets include ASR-generated transcriptions of the
spoken captions; for the Japanese data, we use the XLLSR-53 Large
model fine-tuned on Japanese to generate transcriptions. We then
use the XLM-R Large ViT-L/14 variant of M-CLIP to produce em-
beddings of the transcribed captions, which we use for image-speech
retrieval. All of our models outperform this baseline, especially in
the Japanese and multilingual evaluation settings.

5.3. Analysis of Learned Layer Weights

Fig. 2] summarizes the layer weights learned by our models with
frozen feature extractors. Two separate patterns emerge for English
and non-English weights, regardless of whether they are learned by a
monolingual or a multilingual model. Layers 15 through 18 receive
the highest weights when processing non-English inputs, whereas
layers 17 through 21 receive the highest weights when processing
English speech, suggesting that later HuBERT layers are more spe-
cialized to English than earlier ones. The maximum and minimum
weights assigned to any layer by the language-aware multilingual
model are more similar across languages than the weights learned by
monolingual models. For the language-agnostic multilingual model,
which uses the same weights for both English and non-English
speech, layer weights are distributed according to the non-English
pattern. This does not appear to hurt the model’s retrieval perfor-
mance on English-only test sets, which Table[T] shows is comparable
for the language-agnostic and language-aware models.

5.4. Zero-Shot Speech-Text Retrieval

Since our targets v! are image embeddings in the output space of
CLIP-Large, we can compare our speech embeddings v* to the out-
put v7 of the CLIP-Large text encoder on the English captions for
each image in the batch. We report the performance of our monolin-
gual models and our two large multilingual models on this task.

Image—Speech Speech—Image
R@1 R@5 R@10 R@1 R@5 R@10

Japanese
Trilingual Embds. [16] 20.0 46.8 62.3 20.3 52.0 66.7
Pair Expansion [17] 16.7 443 57.8 20.1 49.7 639
AVLnet [19] 243 56.6 70.0 235 573 704
Japanese-SpeechCLIP 32.1 66.6 78.7 329 664 77.5

Monolingual Batches  21.1 50.0 63.6 225 485 624

Mono+LangID 20.1 50.1 633 20.1 509 643
Multilingual Batches  26.0 56.3 69.7 26.5 55.1 68.0
Multi+LangID 245 554 69.0 246 545 69.8
Multi+TrainFeat 326 664 775 321 66.1 783

Multi+TrainFeat+XLL 51.0 83.3 91.2 48.8 80.0 90.0

ASR—M-CLIP [8] 120 352 463 229 474 585

Bilingual Embds. [15] 7.4 235 354 8.0 250 356
Trilingual Embds. [16] 10.8 31.3 419 11.2 31.5 445
Pair Expansion [17] 93 295 382 94 298 418
AVLnet [19] 17.0 398 51.5 152 389 5l1.1
Hindi-SpeechCLIP 21.8 465 588 19.1 427 573

Monolingual Batches 16.5 35.6 46.9 123 328 445
Mono+LangID 17.1 37.1 494 125 357 475
Multilingual Batches  17.6 41.3 529 16.7 39.1 51.2
Multi+LangID

Multi+TrainFeat 235 525 6477 207 484 622
Multi+TrainFeat+XLL 354 66.1 763 34.6 649 753

ASR—M-CLIP [8] 13.8 302 420 195 40.8 50.8

English
Bilingual Embds. [15] 8.0 252 365 83 282 424
Trilingual Embds. [16] 11.6 358 50.8 139 395 529
Pair Expansion [17] 123 353 47.7 138 402 51.6
English-SpeechCLIP 509 82.8 90.6 489 823 894

Monolingual Batches  37.5 732 847 36.1 709 83.1

Mono+LangID 37.8 729 84.0 36.1 713 839
Multilingual Batches 41.9 756 864 41.1 739 85.1
Multi+LangID 41.1 772 86,5 408 75.0 864
Multi+TrainFeat 446 79.8 891 442 783 873

Multi+TrainFeat+XLL 51.7 82.2 88.9 48.0 79.7 88.0

ASR—M-CLIP [8] 29.2 58.1 694 434 705 789

Multilingual
Monolingual Batches 25.0 553 66.8 29.7 53.5 654
Mono+LangID 250 52.0 653 283 524 662
Multilingual Batches  25.8 56.6 684 33.1 562 66.7
Multi+LangID 249 588 69.2 328 554 68.7
Multi+TrainFeat 340 63.1 759 31.0 615 74.1

Multi+TrainFeat+XLL 44.8 76.3 859 43.0 745 84.9

ASR—M-CLIP [8] 20.0 357 450 285 529 623

Table 1: Retrieval performance on the Places100k test set. For each
language, we evaluate (from top to bottom): monolingual models;
multilingual models trained on 2 V100 GPUs; multilingual models
trained on 8 V100 GPUs; and monolingual ASR cascaded with mul-
tilingual image-text retrieval from prior work. All but the monolin-
gual models are also evaluated on a multilingual test set formed by
randomly selecting a language for each image’s spoken caption.
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Fig. 2: Top: Layer weights learned by monolingual models. Bottom:
Layer weights learned by multilingual models trained on multilin-
gual batches with a frozen HuBERT-Large feature extractor.

Inspired by [20]], we consider image-text retrieval using the
CLIP image and text encoders as a point of comparison. Since the
CLIP image encoder outputs were used as our targets during train-
ing, we would expect this to function as a topline—the performance
our model would achieve if it output precisely the training targets.
Instead, as in [20]], our models significantly outperform this exper-
iment, with improvements of nearly 15% when English text is the
query and over 20% when English text is being retrieved.

In the cross-lingual setting, despite the difficulty of the task, our
models achieve reasonable performance. Our monolingual Japanese
model performs the best in the Japanese Speech—English Text di-
rection, while the multilingual model trained with cross-lingual loss
performs best for all other directions. This is the first work to suc-
cessfully perform zero-shot transfer from image-speech retrieval to
cross-lingual text-speech retrieval with texts longer than a single
word, and sets a strong baseline for the task. We achieve this with
no text at all in the spoken source languages.

5.5. Cross-Lingual Speech-Speech Retrieval

Finally, we consider the task of cross-lingual speech-to-speech
retrieval.  We report results for our “Multi+TrainFeat” model,
for which this is a zero-shot transfer task, as well as for our
“Multi+TrainFeat+XLL” model, for which it is not. The mono-
lingual models trained simultaneously with cross-lingual loss terms
from [16] provide a baseline for this task. Our multilingual model
trained with the cross-lingual loss terms from [16] outperforms prior
work by 20-30% R @10 for all retrieval directions. Even our model
trained without any cross-lingual supervision can perform zero-shot
transferreasonably well. While it underperforms compared to [16]
in the English <=+ Japanese and Japanese <+ Hindi directions, it out-
performs prior work for the English <+ Hindi directions, despite the

Prompt—Target Target<—Prompt
R@1 R@5 R@10 R@1 R@5 R@10

Image <> English Text

51.3 63.8 464 71.8 784

English Speech <+ English Text
571 80.0 851 67.8 89.1 93.1
Multi+TrainFeat* 50.0 757 84.0 63.0 852 90.1
Multi+TrainFeat+XLL* 39.0 68.7 79.1 70.1 90.1 93.2

Japanese Speech <+ English Text
Monolingual 11.8 348 451 129 313 429
Multi+TrainFeat* 9.8 28.6 399 113 279 38.1
Multi+TrainFeat+XLL* 10.8 27.7 39.1 23.9 48.8 60.1

Hindi Speech <+ English Text
Monolingual* 84 223 317 80 225 323
Multi+TrainFeat* 86 252 351 81 259 396
Multi+TrainFeat+XLL* 14.8 34.5 45.7 169 323 40.8
English Speech <+ Japanese Speech

10.5 312 437 106 31.7 44.1
10.2 289 41.1 107 30.0 424
289 564 69.6 28.6 57.2 69.6

English Speech <+ Hindi Speech
76 225 313 76 225 313
93 27.6 402 10.1 28.6 40.6
26.0 495 60.2 251 509 61.8

Japanese Speech <+ Hindi Speech
Trilingual Embds. [16] 10.4 24.6 350 85 248 334
Multi+TrainFeat* 70 194 294 77 184 264
Multi+TrainFeat+XLL 22.5 46.1 56.3 22.0 458 59.0

CLIP [1] 26.1

Monolingual*

Trilingual Embds. [[16]
Multi+TrainFeat*
Multi+TrainFeat+XLL

Trilingual Embds. [[16]
Multi+TrainFeat*
Multi+TrainFeat+XLL

Table 2: Image-text, speech-text, and speech-speech retrieval on the
Places100k test set. * indicates a model is not trained on this task.

significant disadvantage of having not been trained for cross-lingual
speech-speech retrieval. This indicates that learning to align spoken
captions with CLIP image embeddings can produce high-quality
alignments between speech in different languages.

6. CONCLUSION

In this paper, we found that large-scale, English-only pre-training is
effective not only for downstream tasks processing English speech,
but can be used to achieve state-of-the-art performance even for
non-English image-speech retrieval. The CLIP semantic embedding
space can be used to represent not only multiple modalities, but
multiple languages effectively. Examining the layer weights learned
by our model revealed that pre-trained HuBERT speech encoders
specialize for English in later layers, but that features extracted from
their middle layers are useful for non-English downstream tasks
even without any fine-tuning. We also trained a single model to
encode speech in multiple languages into the CLIP semantic em-
bedding space. This model can then be used to perform zero-shot
cross-lingual speech-to-speech retrieval. Our models significantly
outperform prior work when trained with a cross-lingual objective,
and perform comparably to prior work even when trained without
one. Finally, we showed that our learned speech encoders can per-
form zero-shot speech-text retrieval for English text even when the
speech is not in English. In our future work, we plan to explore
the use of these models to bootstrap speech-to-text and speech-to-
speech translation for low-resource languages when neither parallel
data nor non-English text is available.
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