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ABSTRACT
Few-shot learning (FSL) requires a model to classify new
samples after learning from only a few samples. While re-
markable results are achieved in existing methods, the perfor-
mance of embedding and metrics determines the upper limit
of classification accuracy in FSL. The bottleneck is that deep
networks and complex metrics tend to induce overfitting in
FSL, making it difficult to further improve the performance.
Towards this, we propose plug-and-play model-adaptive re-
sizer (MAR) and adaptive similarity metric (ASM) without
any other losses. MAR retains high-resolution details to al-
leviate the overfitting problem caused by data scarcity, and
ASM decouples the relationship between different metrics
and then fuses them into an advanced one. Extensive exper-
iments show that the proposed method could boost existing
methods on two standard dataset and a fine-grained datasets,
and achieve state-of-the-art results on mini-ImageNet and
tiered-ImageNet.

Index Terms— Few-shot learning, adaptive resizer, lear-
nable metric

1. INTRODUCTION

The purpose of FSL is to learn a classifier that can recognize
unseen categories from a small number of samples. A main-
stream mechanism [1, 2] is to learn transferable knowledge
from seen categories, and then use this transferable knowl-
edge to build a classifier, and finally apply the classifier to
unseen categories. Following this mechanism, recently great
advances have been made in metric-based methods for FSL,
achieving state-of-the-art results.

The pipeline of metric-based methods is to learn advanced
deep embedding module and then measure the similarity be-
tween query sample and a few support samples [3]. The sem-
inal work could date back to [4], which propose Siamese Net-
work for obtaining image representations with L1 distance as
similarity metric. Then Matching Network [5] introduce at-
tention mechanism and cosine metric. Prototypical Network
[3] propose mean vector as the corresponding class prototype
representation and adopt Euclidean distance. On the basis of
the above methods, recent approaches can be broadly divided
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(a) Original. (b) Bilinear. (c) MAR.

Fig. 1. Diagram of bilinear and MAR resizing. As shown
in (b), bilinear resizing is equivalent to sampling the original
image in (a). However, as shown in (c), MAR resizing yields
new pixels.

into two categories. The first exploits Gaussian distribution
[6, 7], discrete probability [8, 9], Ridge regression feature re-
construction [10], and attention mechanism [11, 12, 13] for
advanced embedding representations. And the second cate-
gory aims to obtain progressive similarity metric by learnable
metric modules [14, 15], covariance matrices [16, 17], nearest
neighbors [18], and multiple-metric fusion [19]. Remarkable
results have been achieved in above methods. However, deep
networks are prone to overfitting when data scarcity, making
it a challenge to continue improving performance of FSL. To
solve this challenge, the proposed approach presents a pio-
neering solution consisting of two ways.

The first is adding learnable preprocessing module in
front of backbone network. Learnable preprocessing mod-
ules have been early shown could improve visual recognition
[20]. Most approaches explore from super resolution [21, 22],
image decompression [23], image denoising [24], image de-
hazing [25] to improve the performance of specific task of
visual recognition. [26] makes great progress, proposing a
generic framework effective on multiple tasks. It cannot be
used directly for FSL because it requires the introduction of
specific loss and do not take into account FSL characteristics.
For FSL, due to data scarcity, it is crucial for the framework
to obtain enough discriminative details. However, as shown
in Fig. 1, traditional resizing methods directly downsample
high-resolution images to a uniform size, thus details with
discriminative information in high-resolution images may be
lost. To solve this problem, we propose MAR, a learnable
model-adaptive resizer. MAR incorporates the spatial in-
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Fig. 2. The architecture of the proposed MAR. CA denotes
channel attention module.

formation of surrounding pixels during resizing, so that the
details of high-resolution images can be effectively preserved.
In addition, MAR does not introduce any other losses thus
can be flexibly instantiated in existing methods.

The second is to adaptively fuse existing metrics to obtain
advanced discriminative one. Existing methods mainly focus
on finding advanced discriminative higher-order metrics, and
there has been little research on metric fusion. As the first
method to fuse multiple measures into one, [19] proves that
multiple simple metrics outperform a few single high-order
metrics by manually presetting the weights. However, manual
presets are based on sparse priors, which cannot deeply mine
the relationship among various metrics. To solve the prob-
lem, we propose an adaptive metric ASM. ASM can adapt
to different combinations of metrics by learning the weights.
Extensive experiments show that the proposed ASM outper-
forms the method in [19].

2. PROPOSED METHOD

In this section, we first outline metric-based FSL, and then
introduce the details of proposed framework.

2.1. FSL setting

In standard FSL, the dataset C consists of training set Ctrain,
validation set Cval and test set Ctest. Their classes do not have
intersection. A specific task T in FSL is denoted as N -way
K-shot classification, which represents a random sampling of
N classes from the support set Dsupport with K samples per
class. Given a query set Dquery, the porpose is to correctly
classify unlabeled samples in it by learning the knowledge
in the support set Dsupport. We denote the support set as
Dsupport = (xi, yi)

N,K
i=1 , with the instance as xi ∈ RD and

one-hot vector label yi = {0, 1}N . The value of N is gener-
ally 1 and 5.

The first step of metric-based methods is to obtain a classi-
fier by regular classification training on Ctrain, and then take
specific tasks from Ctrain to fine-tune. The final goal is to

obtain a classifier fθ(·) that performs well on unseen classes
Ctest. Mathematically,

ŷj = fθ(xj ; Ctrain), xj ∈ Ctest (1)

where xj denotes the unseen sample and ŷj denotes the pre-
dicted label.

2.2. Model-adaptive resizer

The proposed MAR is shown in Fig. 2. For large receptive
field and less parameters, the convolution kernels of the first
two layers are 7 × 7 and 1 × 1. And GELU is used for non-
linear activation. Then features are resized by bilinear to a
uniform size. Output features are fed into n MARBlocks,
where MARBlock is a module for feature enhancement. Af-
ter the features plus residual are convolved with a 3 × 3 kernel
and then summed with original downsampled residual, the
MAR output is obtained. As shown in Fig. 1, the conven-
tional resizer is only able to extract partial information of the
high-resolution image. However, the proposed MAR can ex-
tract partial information while preserving some key details in
high-resolution images.

2.3. Adaptive similarity metric

In general, inputs are all transformed into vectors of the same
length after embedding, and prediction is achieved by simi-
larity measurement on the vectors fromDsupport andDquery.
And the widely adopted metrics are Euclidean distance and
cosine similarity in existing methods. Almost all methods
select one of them, and few have explored the fusion of
them. As unique to our knowledge, BSNet [19] innovatively
explores metric fusion roughly by manually presetting the
weights. To further extend the work of BSNet from an adap-
tive perspective, we propose ASM. Specifically, given a FSL
task T , Ck is used to denote the sample set of class k in the
task. The prototype of class k is represented as

ωk =
1

Ck

∑
(xi,yi)∈Ck

Ψ(xi) (2)

where Ψ(·) represents embedding module. For the query sam-
ple xj in task, similarity with Ck can be denoted as

sim(Ψ(xj), ωk) = α · euc(Ψ(xj), ωk) + β · cos(Ψ(xj), ωk)
(3)

where α and β denotes learned weights, sim(·) denotes ASM,
euc(·) denotes Euclidean distance and cos(·) denotes cosine
similarity, respectively.

2.4. Implementation of proposed method

In our method, as shown in Fig. 3, training is divided into
three stages: backbone training, joint training and fine-tuning.
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Fig. 3. Illustration of the proposed framework in 3-way 2-shot setting. fθ(·) represents backbone network, gφ(·) represents
MAR and sim(·) is ASM. Training consists of three stages: backbone training, joint training and fine-tuning.

In backbone training stage, we only train the backbone net-
work f(·) in traditional classification way to learn the param-
eters θ1, obtaining the preliminary model fθ1(·). Then, in
joint training stage, MAR, denoted as g(·) is instantiated in
front of fθ1(·). This stage learns parameters φ1 and θ2 in the
same way as first stage. The obtained model are denoted as
gφ1

(·) and fθ2(·), respectively. Finally, in fine-tuning stage,
we train the model obtained in the second stage in meta man-
ners to obtain the final parameters φ and θ, i.e., the embedding
module Ψ(·) = fθ ◦ gφ(·).

Specifically, in traditional classification way, training is
done by adding a fully-connected (FC) layer after CNN. Then
FC layer is removed and we randomly sample several tasks T
from Dquery in validation set Cval to save the best model. In
meta manner, i.e. fine-tuning stage, a large number of (xi, yi)
are taken from Dsupport. Then xi are fed to resizer gφ1

(·)
to get the resized xi (denoted as x̃i), and x̃i passes backbone
fθ2(·) to get the embedding for similarity measure and loss
calculation. Mathematically, backbone training stage can be
written as

arg min
θ1

∑
(xj ,yj)∈Dquery

l (yj , fθ1(xj ;Dsupport)) (4)

where (xj , yj) denotes the sample pairs taken from validation
set Cval, and l(·) represents the loss between the prediction
and the actual label. Similarly, joint training stage can be
marked as

arg min
θ2,φ1

∑
(xj ,yj)∈Dquery

l (yj , fθ2 ◦ gφ1
(xj ;Dsupport)) (5)

where θ2, φ1 are learned parameters, and other terms are con-
sistent with Eq. 4. Fine-tuning stage is the same as the joint
training, except that the learned objectives are θ and φ.

Overall, α, β, θ and φ are updated with cross-entropy
loss. Finally, predictions are mapped from embedding space
to probabilities via softmax. Concretely, the probability of
query sample xj belonging to category k is

p(ŷj = k|xj) =
exp(sim(Ψ(xj), ωk))∑

xj∈Dquery
exp(sim(Ψ(xj), ωk))

(6)

and the loss can be calculated by

L = − 1

|Dquery|
∑

(xj ,yj)∈Dquery

yj log(p(ŷj = k|xj)) (7)

3. EXPERIMENTS

3.1. Datasets and experiment settings

Our experiments are conducted on datasets mini-ImageNet
[5], tiered-ImageNet [27] and CUB [28]. For mini-ImageNet
and tiered-ImageNet we adopt ResNet-12 as the backbone
network, and for CUB we employ Conv-4 and ResNet-12
(Conv-4 is the same setting as in [19]). In training of ResNet-
12, we utilize Adam optimizer with weight decay 0.0005, and
learning rate starts from 0.0001 and drops by a factor of 0.1.
For Conv-4, we use SGD optimizer with a momentum of 0.9
with learning rate starting at 0.0002 and decreasing by a factor
of 0.5.



Model
mini-ImageNet tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

DeepEMD [8] 65.91 82.41 71.16 86.03
BML [29] 67.04 83.63 68.99 85.49
Baseline++ [30]† 63.15 81.77 67.97 84.43
ProtoNet [3]† 62.26 80.19 67.47 82.07
FEAT [12]† 66.67 82.01 70.97 84.87
Meta-Baseline [31]† 64.91 80.78 65.77 83.21
Meta DeepBDC [9]† 67.37 84.39 72.68 87.87

Ours 65.19 82.38 69.01 85.17
FEAT + Ours 67.41 82.98 71.74 85.81
Meta-Baseline + Ours 65.11 81.67 68.81 85.34
Meta DeepBDC + Ours 68.24 84.45 73.71 87.91

Table 1. Results on mini-ImageNet and tiered-ImageNet at
5-way setting. The best results are marked in bold black.

Model
Resizer’s
Input Size

Resizer’s
Output Size

5-way
1-shot

5-way
5-shot

Baseline original 84 × 84 62.26 80.19
ASM original 84 × 84 64.41 82.34
MAR 112 × 112 84 × 84 64.84 80.28
MAR 126 × 126 84 × 84 64.45 80.23
MAR 168 × 168 84 × 84 65.02 80.31

MAR+ASM 112 × 112 84 × 84 64.10 82.00
MAR+ASM 126 × 126 84 × 84 63.98 81.97
MAR+ASM 168 × 168 84 × 84 65.19 82.38

Table 2. Results of different combinations of MAR and ASM
on mini-ImageNet.

Model
Number of

MARBlocks
5-way 1-shot

(%)
5-way 5-shot

(%)

Ours 2 63.73 ± 0.49 81.73 ± 0.34
Ours 4 65.19 ± 0.52 82.38 ± 0.33

Table 3. Results of different number of MARBlocks on mini-
ImageNet. The input size of MAR is 168 × 168.
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Fig. 4. Results of fine-grained FSL experiments compared
with BSNet [19] on CUB.

3.2. Experimental results

For a fair comparison, a baseline of the proposed method has
been built with ResNet-12 as backbone. Input size of MAR
is set to 168 × 168 and weights of ASM, α and β, are initial-
ized to 1.24 and 0.1. Results can be seen from Table 1. On
mini-ImageNet and tiered-ImageNet, this baseline improves
2.93% and 2.19%, 1.54% and 3.1% compared with [3], and
0.28% and 1.6%, 3.24% and 1.96% compared with [31], at
5-way 1-shot and 5-shot settings, respectively. To further ex-
plore the plug-and-play property of the proposed model, we
instantiate it in FEAT, Meta-Baseline and Meta DeepBDC.
The results are shown in Table 1. It improves FEAT by
0.74% and 0.77%, Meta-Baseline by 0.2% and 3.04%, Meta
DeepBDC by 0.87% and 1.03% at 5-way 1-shot, 0.97% and
0.94%, 0.89% and 2.13%, 0.06% and 0.04% at 5-way 5-shot,
on mini-ImageNet and tiered-ImageNet, respectively.

3.3. Ablation analysis

Extensive experiments have been done to demonstrate the ef-
fectiveness of the proposed method. Specifically, we build
a baseline with ResNet-12. Three different configurations,
MAR, ASM and MAR + ASM, are obtained by instantiating
MAR and ASM. 112 x 112, 126 x 126, 168 x 168 are explored
as different input sizes for MAR. The details are shown in Ta-
ble 2. Compared with baseline, the addition of MAR and
ASM improved the model at 5-way 1-shot and 5-way 5-shot
by up to 2.93% and 2.19% on mini-ImageNet. And MAR has
a large improvement for 5-way 1-shot and ASM for 5-way
5-shot, reaching 2.76% and 2.15%, respectively. To further
explore the proposed method, we investigate the impact of
different number of MARBlocks on the performance. Results
can be seen in the Table 3. It shows that 4 MARBlocks are su-
perior to 2. Moreover, we compare the proposed framework
with BSNet [19]. Similar to ResNet-12, we also build a base-
line with Conv-4. Based on them, we explore the performance
of different configurations on CUB. Results are shown in Fig.
4. At 5-way 1-shot and 5-way 5-shot, our method improves
up to 3.96% and 1.37% for Conv-4 and 2.24% and 0.39% for
ResNet-12. And learned α and β are 1.24 and 0.1, 1.91 and
0.1, respectively, which further explores BSNet. Since CUB
is a fine-grained dataset, the results also demonstrate that a
generalization of our approach to other domains.

4. CONCLUSION

In this paper, we propose a plug-and-play framework for FSL.
A learnable resizer (MAR) is adopted to enhance the embed-
dings, and adaptive metric (ASM) is used to obtain advanced
discrimination capabilities. MAR alleviates the loss of de-
tailed information in traditional preprocessing pipeline, and
ASM converts simple metrics into an advanced and efficient
one. In addition, we open a novel view to improve FSL from



the perspective of input data and adaptive similarity measure-
ment. Extensive experiments demonstrate that the proposed
adaptive framework is a potential direction and could effec-
tively boost existing methods.
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