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ABSTRACT

Electrocardiogram (ECG) synthesis is the area of research focused
on generating realistic synthetic ECG signals for medical use with-
out concerns over annotation costs or clinical data privacy restric-
tions. Traditional ECG generation models consider a single ECG lead
and utilize GAN-based generative models. These models can only
generate single lead samples and require separate training for each
diagnosis class. The diagnosis classes of ECGs are insufficient to
capture the intricate differences between ECGs depending on vari-
ous features (e.g. patient demographic details, co-existing diagnosis
classes, etc.). To alleviate these challenges, we present a text-to-ECG
task, in which textual inputs are used to produce ECG outputs. Then
we propose Auto-TTE, an autoregressive generative model condi-
tioned on clinical text reports to synthesize 12-lead ECGs, for the first
time to our knowledge. We compare the performance of our model
with other representative models in text-to-speech and text-to-image.
Experimental results show the superiority of our model in various
quantitative evaluations and qualitative analysis. Finally, we conduct
a user study with three board-certified cardiologists to confirm the
fidelity and semantic alignment of generated samples. our code will
be available at https://github.com/TClife/text_to_ecg

Index Terms— text-to-ECG, ECG synthesis

1. INTRODUCTION

According to the global health mortality analysis [1], heart diseases
are ranked among the highest causes of death. In order to prevent
or detect symptoms of heart disease in the early stages, clinicians
measure electrocardiograms (ECG), which is a non-invasive diag-
nostic tool to check a patient’s heart rhythm and electrical activity.
Interpreting ECGs of patients periodically, however, is a huge bur-
den for a limited number of cardiologists working day in and day
out. Therefore, many attempts have been made in developing ECG
arrhythmia classifiers [2]. Unfortunately, data privacy restrictions [3]
and annotation costs [4] limit ECG data usage for training automatic
ECG classifiers. Thus, an important area of research in the medical
domain is to generate realistic ECG signals, addressing these issues.

There is rapid progress in generative models in various domains
such as images [5, 6], text [7], and speech [8, 9]. The main objective
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of each area of research is to improve fidelity and diversity of gener-
ated samples. This is no exception in the domain of ECG synthesis.
In [3], various Generative Adversarial Network (GAN) architectures
were used to generate ECGs. Then, [10] introduced a system of Or-
dinary Differential Equations (ODE) representing heart dynamics to
create ECG samples. More recently, [4] introduced ECG generation
model conditioned on heart diseases to improve synthesis results.
However, there are still limitations to previous methods because most
do not consider multi-view ECGs or other details in text reports.

We propose text-to-ECG generation, in which realistic 12-lead
ECGs are generated conditioned on clinical text reports. This im-
proves on the previous ECG synthesis model conditioned on heart
diseases by conditioning on full text reports which contain other rele-
vant details of how the ECG is formed. For example, a full text report
of an ECG labeled as “Left Bundle Branch Block” may be “Left
Bundle Branch Block, commonly due to ischaemic heart disease.”
Ischaemic heart disease is a term given to heart problems caused
when arteries are narrowed, and considering such detail during ECG
generation will only improve the quality and realism.

Although there are no existing previous works in the text-to-ECG
domain, the text-to-speech domain can be considered most relevant
to our work because the objective is to generate time-series data
from text inputs. Tacotron 2 [8] is considered a representative au-
toregressive text-to-speech model in speech synthesis, surpassing all
of prior works at the time of release. However, Tacotron 2 outputs
mel-spectrograms, and therefore must be paired with a vocoder to gen-
erate raw audio samples. The most basic form of vocoder is the fast
Griffin-Lim algorithm [11], which approximates magnitude spectro-
gram inversion by alternating forward and inverse Short-time Fourier
transform (STFT) operations. Then, the Hifi-GAN [12] achieved
state-of-the-art vocoder performance. Recently, diffusion probabilis-
tic model [9] is introduced as a novel architecture for TTS.

In this paper, we present Auto-TTE, the first autoregressive text
guided 12-lead ECG generation model. This model is a two-phase
network, where in the first phase raw ECG signals are quantized to a
sequence of tokens using Vector Quantized-Variational AutoEncoder
(VQ-VAE) [13]. The model encodes raw ECGs to discrete codes, and
reconstructs back to the original raw ECG from discrete representa-
tions. In the second phase, quantized ECG tokens are used as inputs
alongside text tokens encoded with BPE [14] tokenizer. This sin-
gle stream of text and ECG tokens are trained autoregressively with
a Transformer-decoder model [15]. We present various evaluation
methods focusing on different generative aspects of the models such
as fidelity and text-ECG alignment. Also, we conduct a user study
with three board-certified cardiologists. Our experimental results
show our proposed model outperforms other baseline models.
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Fig. 1: Overall framework of the proposed architecture. There is a BPE Tokenizer (Output can be concatenated with patient-specific embedding),
a pre-trained VQ-VAE encoder that quantizes the ECG signal, an autoregressive model that generates quantized ECG tokens from text tokens,
and a pre-trained HiFi-GAN decoder that transforms quantized ECG tokens into a raw ECG signal.

2. MODEL ARCHITECTURE

The overall architecture of our proposed framework is shown in
Fig.1. The architecture consists of three parts: VQ-VAE encoder,
Autoregressive Transformer model, and HiFi-GAN decoder.

2.1. VQ-VAE Encoder

Although 10 second raw ECG signals contain significantly less
timesteps compared to the same 10 second audio signals due to the
difference in the sampling rate (500Hz vs. 16kHz), our ECG signals
have 10 second ECG segment in 12 different views. Therefore, the
amount of information for each ECG signal is multiplied by a factor
of 12. Models like the Variational Autoencoder [16] is commonly
used for compression, but the learned continuous latent representation
cannot be used as inputs to a Transformer model. To this end, we use
the VQ-VAE, which is able to compress the raw ECG signals and
quantize them to discrete latent representations.

VQ-VAE training process contains three parts, which are encoder,
a codebook, and decoder. The encoder E consists of four convolu-
tional layers to downsample the 12-lead ECG signal. The codebook
C, also defined as the latent embedding space, consists of code vec-
tors ck ∈ RK×d, where K represents the codebook size and d the
dimension of each code vector ck, k ∈ 1, 2, ...,K. Given a raw ECG
signal x ∈ RL×T with L leads and T timesteps, x goes through
the encoder to produce output l̂ = Ec(x) ∈ RT

′×d, where T ′ is
the reduced time dimension after downsampling. The output after
quantization Eq(.) process is as follows:

Eq(l̂) := (argmin
ck∈C

‖l̂i − ck‖22 for all i in T ′)

Then, the decoder U reconstructs the input x̂ = U(Eq(l̂)). The entire
process is trained with the following loss function:

LV Q = ‖x− x̂‖22+‖sg[Ec(x)]−Eq(l̂)‖22+‖sg[Eq(l̂)]−Ec(x)‖22

where sg stands for stop-gradient, which is an identity during the
forward pass and zero gradient during the backward propagation.

2.2. Autoregressive Transformer-decoder model

Given a text-ECG pair, the text inputs pass through the BPE Tokenizer
to produce a sequence of subword indices, or text tokens. Also,
patient-specific information is used to produce each of the patient-
specific tokens. We consider only age and gender of patients, but
any patient-specific demographic information can be used for this
process. Patient-specific tokens are prepended to text tokens as a
single sequence, and a lookup table produces a token embedding,
u. Similarly, after fully training the VQ-VAE, the encoder quantizes
a 12-lead ECG signal as a sequence of code indices Eq(l̂) with the
codebook embeddings. These indices are considered as quantized
ECG tokens, and also goes through a lookup function to produce
ECG token embeddings, v. Then, both u and v embeddings are
concatenated to create S = u1, u2, ..., uTa , v1, v2, ..., vTb where Ta
represents the length of patient-specific and text token embeddings,
and Tb represents the length of ECG token embeddings. Finally, the
embeddings are used to train a Transformer-decoder model with the
cross-entropy loss function parameterized by θ as follows:

LT = −
M∑
i=1

Tb∑
j=1

log pθ(v
i
j |u1

1, ..., u
i
Ta
, v11 , ..., v

i
j−1)

where M represents the number of samples. Each ECG token can
attend to any of the previous text tokens, and standard causal mask
is used for text-to-text and ECG-to-ECG attention masks. The final
tokens are selected with argmax sampling.

2.3. Hifi-GAN Decoder

A fully trained VQ-VAE decoder U can be used to decode the Trans-
former output to a 12-lead ECG signal. However, a decoder that
properly models different frequency components and periodic pat-
terns of ECG signals can generate higher quality samples. Therefore,
we utilize the Hifi-GAN [12] architecture, which contains the afore-
mentioned attributes in two discriminators with different training
objectives. The first discriminator is the Multi-Scale Discriminator
[17] that effectively learns different frequency components of signals



Table 1: The AUROC column represents Area Under the Receiver Operating Characteristic Curve (AUROC) scores of samples generated
with each model by using text prompts and six different diagnosis classes as text inputs. For all tables, ∗ refers to p-value < 0.05 (statistically
significant) compared to “Auto-TTE”.

Model Classification Results (AUROC) CLIP scoreAFIB Bradycardia LBBB Normal ECG RBBB Tachycardia Average
Ground Truth 0.995 0.983 0.987 0.990 0.977 0.981 0.986 0.7010

Diffusion Model 0.730∗ 0.735∗ 0.667†∗ 0.669†∗ 0.723∗ 0.803†∗ 0.721 0.4711∗

Tacotron 2 + Griffin-Lim 0.664†∗ 0.574†∗ 0.633∗ 0.610∗ 0.603∗ 0.644∗ 0.621 0.3746∗

Tacotron 2 + Hifi-GAN 0.820 0.822∗ 0.846∗ 0.811† 0.894†∗ 0.828†∗ 0.834 0.6209∗

Auto-TTE 0.824 0.848 0.905 0.839† 0.841 0.886 0.857 0.6444

†: standard deviation > 0.02, ∗: p value < 0.05
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Fig. 2: Human evaluation of Auto-TTE (ours) vs Tacoton2 + Hifi-
GAN and Diffusion model. Percentages of rank 1 are displayed.

through variation in scales. The second discriminator is the Multi-
Period Discriminator, which operates convolution process in periodic
variations. Distinct periodic features are extracted by considering
different periodic segments of ECG signals.

The difference between the original Hifi-GAN model and our
Hifi-GAN decoder is that the original model used Hifi-GAN to pro-
duce raw audio waveforms from mel-spectrogram inputs, while we
produce raw ECG signals from quantized ECG tokens. Our generator
is a fully convolutional neural network consisting of several trans-
posed convolutions to upsample the quantized ECG token inputs to
the raw 12-lead ECG signal outputs. We will denote our generator
as G and both our discriminators as a single discriminator D. Then,
the training objective follows LS-GAN [18], which uses least squares
instead of binary cross-entropy loss. The loss is defined as:

Ladv(D) = E(x,Eq(l̂))

[
(D(x)− 1)2 + (D(G(Eq(l̂))))

2

]

Ladv(G) = Es
[
(D(G(Eq(l̂)))− 1)2

]
The discriminator is trained to classify samples synthesized from the
generator to zero, and ground-truth samples to one. Additionally, the
spectrogram loss and feature matching loss are presented as:

Lspec(G) = E
[
||spec(x)− spec(G(Eq(l̂)))||1

]

Lfm(G) = E
[ Z−1∑
i=0

1

Ni
‖Di(x)−Di(G(Eq(l̂)))‖1

]
where the spec(.) function transforms the input signal into a spectro-
gram using STFT, Z represents the number of layers in the discrimi-
nator, and Di and Ni means the features and number of features in

Table 2: FID score, Precision, and Recall. ∗ refers to p-value < 0.05
(statistically significant) compared to Auto-TTE.

Model FID(↓) Precision Recall
Diffusion Model 16.46∗ 0.896∗ 0.598∗

Tacotron 2 + Griffin-Lim 22.93∗ 0.887∗ 0.423∗

Tacotron 2 + Hifi-GAN 9.18∗ 0.934 0.646∗

Auto-TTE 7.17† 0.946 0.842
†: standard deviation > 0.2, ∗: p value < 0.05

i-th discriminator layer. Finally, the final objective is a weighted sum
of all three losses.

3. EXPERIMENTS

3.1. Experimental Settings

We conduct experiments on the PTB-XL dataset [19] and Sejong
dataset. The publicly available PTB-XL dataset consists of 21,833
text-ECG pair samples. Sejong dataset is a private dataset of 37,329
text-ECG pairs provided by Sejong General Hospital. All ECG sam-
ples in both datasets are 12-lead with 10-second segments sampled
in 500Hz. After combining the two datasets, we randomly split the
dataset into train (80%), validation (10%) and test (10%) sets. All
experiments were conducted with 4 RTX A6000 GPUs.

3.2. Training Setup

We train all models with a batch size of 64. For Tacotron 2 and
Hifi-GAN, we use linear spectrogram which is transformed from raw
ECG signals with STFT using 32 window size, 8 hop size, and 32
FFT. We also use the V1 model for Hifi-GAN, which is the large
parameter model with initial channel of 512. For Hifi-GAN training,
we utilized 1, 2, and 45 for least squares, spectrogram, and feature
matching loss weights, respectively. Also, we used AdamW optimizer
[20] with β1 = 0.8, β2 = 0.99 and weight decay of λ = 0.01. The
Transformer-decoder model contained 12 attention layers, 8 attention
heads, and per-head dimension 64. For Tacotron 2, VQ-VAE, and
autoregressive Transformer-decoder model training, we optimized
the models using Adam [21] optimizer, and learning rate of 2×10−4.
The BPE tokenizer encoded text using at most 128 tokens, and a
vocabulary size of 3,000. The VQ-VAE compressed 12× 5000 ECG
signals to 312 tokens, reduced by a factor of 192 with vocabulary size
of 1024. As an additional baseline, we use a diffusion-based model.
After trying numerous variations (e.g. generate mel-spectrogram,
generate latent representation [22]), we used diffusion directly on raw
12-lead ECG signals, which showed the best performance. Our U-net
architecture is similar to the architecture in [23], except that we used
12 channels and 1-D convolutions for ECG data.



Table 3: AUROC and Clip score results for Auto-TTE and ablations.
Model Average AUROC CLIP score
No PSE & Hifi-GAN decoder 0.829 0.5833∗

No PSE 0.832∗ 0.5908∗

No Hifi-GAN decoder 0.817† 0.6104∗

Auto-TTE 0.857 0.6444

†: standard deviation > 0.02, ∗: p value < 0.05

Table 4: FID score, Precision, and Recall for Auto-TTE and abla-
tions.

Model FID(↓) Precision Recall
No PSE & Hifi-GAN decoder 9.27†∗ 0.912 0.812
No PSE 8.76∗ 0.911∗ 0.832
No Hifi-GAN decoder 7.21† 0.926 0.812∗

Auto-TTE 7.17† 0.946 0.842

†: standard deviation > 0.2, ∗: p value < 0.05

3.3. Quantitative Results

We conduct various evaluations to compare our model against other
baseline models: Diffusion model, Tacotron 2 + Griffin-Lim, and
Tacotron 2 + Hifi-GAN.

The first evaluation is conducted to test how well the generated
ECGs can capture representative cardiac diagnoses when they are
given as textual input. We first collect most frequent textual prompts
with each diagnosis in our dataset, which is determined with a Word
N-gram of N between 4 and 10. Then, we use the corresponding
ECGs to train a multi-label classifier with ResNet-34 [24] architecture
and 1-D convolutions. Finally, we generate 128 ECG samples for
each diagnosis with the collected textual prompts. The classification
results of different models are shown in Table 1.

The second evaluation is conducted to assess text-ECG align-
ment performance, and is based on Contrastive Language-Image
Pre-training (CLIP) [25] method. Instead of training an image en-
coder, we train an ECG encoder jointly with a text encoder to predict
correct pairings of ECG and text. We then generate ECGs based on
full text reports in the test set with each model. During test time, the
CLIP score between a text report and a generated ECG is evaluated.
The positive score results of this evaluation is shown in Table 1.

The third method is conducted to evaluate fidelity of generated
ECGs. It is the Fréchet inception distance (FID) score for ECGs based
on a self-supervised learning model introduced in [26], which is pre-
trained in Physionet 2021 dataset [27]. We modify the last layer of
the pre-trained model to output a 64-dimensional feature vector. The
generated ECGs from the CLIP score evaluation and ground-truth test
set ECGs are both passed through the pre-trained model to produce
feature vectors for FID score evaluation. Afterwards, precision and
recall values are also calculated following [28]. The results are shown
in Table 2. For all evaluations, we conduct 10 random multiple-
bootstrap experiments and report mean and standard deviations. Also,
we perform statistical hypothesis test by conducting independent t-test
with a significance value of 0.05 to identify statistically significant
pairwise difference between Auto-TTE and other models. Auto-TTE
has the best results in most evaluation methods.

We also conduct a human evaluation with three board-certified
cardiologists to compare our approach with Tacotron 2 and Diffusion.
Given a full ECG text report, the cardiologists compared the generated
ECGs from each model and ranked them for text-ECG alignment
(how accurately the ECGs align with the text report) and realism (how
realistic the ECGs themselves are). We present average rankings of
100 samples from each model, as shown in Figure 2. The ECGs

(a) ECGs generated with different models and same text

(b) ECGs generated with Auto-TTE and different texts
Fig. 3: Figure (a) shows the “V6” lead of generated ECG samples
with Auto-TTE, Tacotron 2 + Hifi-GAN, and Diffusion models with
text “Baseline Wander in Lead(s) V6”. Figure (b) shows lead II
and are generated with Auto-TTE. Texts used are “V-rate 50-99”,
“V-rate<50”, and “V-rate>99”. All orders are in top-to-bottom.

generated with Auto-TTE were ranked the highest for both text-ECG
alignment and realism, followed by Tacotron 2 and Diffusion.

3.4. Qualitative Analysis

To examine the ability of our model to generate accurate ECGs con-
ditioned on diverse details in text reports, we first use the most com-
monly occurring artifact in the ECG: baseline wander, which is a
baseline drift effect. We compare the generation result from using a
text input that indicates baseline wander in a specific lead. Also, we
compare generated ECGs by Auto-TTE using text inputs that alter
ventricular rate (v-rate), which is heart rate per minute. Results are
shown in Figure 3.

3.5. Ablation Study

We conduct ablation study for Auto-TTE, and evaluate in the same
methods described in Section 3.3. In Table 3, the average AUROC and
CLIP score is the highest for Auto-TTE, and largely decreases with
the absence of Hifi-GAN decoder and PSE, which refers to Patient-
Specific Embedding. Here, “No Hifi-GAN decoder” substitutes Hifi-
GAN decoder with pre-trained VQ-VAE decoder. In Table 4, similar
trends are also shown for FID, precision, and recall values.

4. CONCLUSION

In this work, we propose a novel text-to-ECG task and a text-to-ECG
generation model. Our model, Auto-TTE, first quantizes ECGs into
discrete representations, and performs autoregressive Transformer
model training with text and patient-specific embeddings. Then,
the decoder synthesizes 12-lead ECG signals with high realism and
semantic alignment to full text reports. By rigorously evaluating
our model on various evaluation methods and conducting a user
study with board-certified cardiologists, we demonstrate the superior
performance of Auto-TTE compared to other baseline models.
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