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ABSTRACT

We propose a novel voice activity detection (VAD) model in a
low-resource environment. Our key idea is to model VAD as
a denoising task, and construct a network that is designed to
identify nuisance features for a speech classification task. We
train the model to simultaneously identify irrelevant features
while predicting the type of speech event. Our model con-
tains only 7.8K parameters, outperforms the previously pro-
posed methods on the AVA-Speech evaluation set, and pro-
vides comparative results on the HAVIC dataset. We present
its architecture, experimental results, and ablation study on
the model’s components. We publish the code and the models
here https://www.github.com/jsvir/vad.

Index Terms— Voice Activity Detection, Feature Selec-
tion, Speech Recognition

1. INTRODUCTION

Speech activity detection (or Voice Activity Detection - VAD)
is crucial in the voice processing pipeline. VAD generally
serves as a filtering submodule for the downstream tasks,
which are typically much more computationally expensive.
A good VAD model should have a small number of param-
eters and lead to high detection accuracy. It is well-known
that there is a trade-off between both of the desired qualities
when using deep learning models for VAD. Recently pro-
posed architectures for VAD [l 2] presented a breakthrough
by improving both the accuracy and reducing the model’s
size. Kopukli et al. [1] proposed to use sinc function-based
convolution and frequency shift modules to reduce the model
size while preserving high accuracy in voice detection. Jia
et al. [2]] exploit 1D time-channel separable convolutions to
treat the size-accuracy trade-off. Most of the recent works
on VAD operate on single frame-level chunks and require
postprocessing to aggregate several frame-level predictions
into a single output [} [2} 13} 4} 5} 16} [7, 18, 9]]. Inspired by
[LOL [11L [12] where a segment-level model is also suggested,
we proposed a VAD model for segment-level voice detection,
hence, a broader input context is provided but not necessarily
required. Such a setup removes the need for postprocessing
which is required in frame-level VAD models. We propose a
novel model and training regime that reduces the number of

parameters of the model and improves the model’s accuracy
compared with leading baselines.

Intuitively, our framework relies on modeling the VAD
problem as a denoising task, where the model classifies be-
tween speech and noise. The signal could be represented
as a union of disjoint speech events x = (J s, where s, €
{noise, speech} at time frame i. We have no assumptions
on the duration of a single frame. Thus, we can use a short
or long segment to represent the signal in the Fourier do-
main. Feature selection aims at attenuating noisy or nuisance
features that are useless for the main prediction task. VAD
model could be trained as a feature selection model that dis-
regards all time frames associated with noise or non-speech.
We propose a novel method that exploits the feature selection
paradigm to train a VAD model. Specifically, we apply the
Locally Stochastic Gates (LSTG) mechanism, recently pro-
posed for feature selection [13}[14].

VAD model is assumed as Neural Network that predicts
the gates on the input signal to produce a sparse output for the
downstream model. This NN-based gating model is trained
with Gaussian-based relaxation of Bernoulli variables, termed
Stochastic Gates (STG) [15], which relies on the reparame-
terization trick [16, [17] to reduce the variance of the gradient
estimates. Since the gates are learned as a function of in-
put samples, we denote them as local [14] in contrast to the
global setup [13]. By applying LSTG method, we select the
most informative features in spectrum representation in both
time and frequency dimensions; then, we aggregate the selec-
tion results to produce voice activity estimation for an input
audio segment.

Specifically, this paper makes the following contributions:

1. We propose a novel SG-VAD model based on 1D time-
channel separable convolutions and the Locally Stochastic
Gates mechanism that predicts labels for multiple frames in
the audio signal.

2. SG-VAD achieves state-of-the-art performance on the
AVA-speech [18] and HAVIC datasets [19] with minimal
training setup.

3. SG-VAD has 11x fewer parameters than MarbleNet
model [18], and its size is very close to ResectNet model [[1]],
which makes it applicable to run on edge devices.



Fig. 1. Training flow of the proposed framework. An aux-
iliary classifier is used to train the main module SG-VAD.
SG-VAD is a dynamic feature selection model that gates un-
informative features for the auxiliary classifier. Both models
are trained simultaneously by minimizing classification error
while selecting a few features.

2. METHOD DESCRIPTION

In the following subsections, we detail the training and infer-
ence steps of our method and the two main components of our
neural network.

2.1. Method overview

To describe our method, we distinguish between training and
inference.

Training During the training, which is illustrated in Fig-
ure[I] we train two neural networks in an end-to-end fashion:
the first one is the main model SG-VAD which serves as a
feature selector model, and the second is an auxiliary mod-
ule which is trained as a multi-label classifier. To train these
modules, we minimize the sum of two loss terms: L,, and
L., which are described in the following sections in more
detail. SG-VAD produces the same size output z as its input
x, a tensor of binary labels. Then the input x is multiplied in
an element-wise way by z to produce z4qseq. The classifier,
in turn, outputs prediction g, which is trained to agree with
the target class of x.

Inference At inference, only the model SG-VAD is
used. For the given input tensor, the model outputs the same
size tensor with gates on features. The gates are then used to
estimate a voice activity label. In the following section, we
explain how is it done.

2.2. Stochastic Gates Based VAD (SG-VAD)

The main module, SG-VAD, is based on 1D time-channel
separable convolutions and inspired by the MarbleNet model
[2]. We present its architecture in Figure[2] It includes a 1D
time-channel separable convolution layer followed by batch
normalization and Tanh activation. Next, two residual layers
with the same architecture but different kernel widths are ap-
plied. An additional single 1 x 1 convolution layer is applied
before the final Stochastic Gates thresholding layer. During
the training, the model accepts extracted features from the au-
dio segment with channel size 32 and variable time dimension
and outputs the gated version of the features where nuisance
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Fig. 2. A diagram of the SG-VAD model. MFCC features
are forwarded through residual 1D time-channel separable
convolutions with batch normalization and a tanh activation.
Hard thresholding is applied to produce binary features z,
which are aggregated into an output voice activity prediction
score Yyad-

features are replaced with zero values. Assuming that the out-
put of the 1 x 1 convolution layer is p;, the model is trained
with the loss term L4(2;) = ||2i||o where z; is denoted as
input gates and is defined by the hard thresholding function

(1):

z; = max(0,min(1,0.5 + p; + €;)), (D

where ¢; is drawn from N(0,0%) and 0 = 0.5 is fixed
throughout training. To encourage the model to attenuate
the background noises, we calculate and optimize L, only
for samples labeled as background. In addition, to provide a
gated input to the downstream classifier during the training,
x; is multiplied in an element-wise fashion by z; to produce
the sparse version of z; which is Zgqteqd = T; © 2.

During inference, the VAD label §,,4 for an input x; with
T time frames is estimated by formula (2), where 2/ € {0,1}:

1 T 32 )
Goaa(®) = 75 YD 4 )
i=1 j=1



2.3. Auxiliary Classifier

The second component of our model is a Convnet-based clas-
sifier. Specifically, we use MarbleNet3x1x64 [2] with three
blocks without repetitions and a channel size of 64 in each
block. The module is trained as a multi-class classifier with
a cross-entropy loss L. function on gated inputs 44¢eq pPro-
duced by the SG-VAD module. The target labels include dif-
ferent speech event classes and a single class for background
noise or non-speech events.

L(z;) = Lgg(2i) + Lee(x4), 3)
' otherwise

B Lce (xz)a

We train both modules end-to-end to minimize the loss in
(3). To discriminate between multiple classes, we propagate
the gradients from the cross-entropy loss back to SG-VAD.
This way, the SG-VAD model can distinguish between noise
and speech more precisely. In addition, the predictions of
SG-VAD become more accurate since the STGs attenuate the
noise during the training process of the downstream classifier.
In section[3.3] we show that although the model is trained with
minimal training setup compared with previous works, it still
outperforms both MarbleNet [2] and ResectNet [1] models on
AVA-Speech [[18] evaluation dataset.

3. EXPERIMENTS

3.1. Training methodology

We train our model on a smaller dataset compared to most ex-
isting baselines. This can allow us to highlight to algorithmic
advantages of our framework. We use Speech Google Com-
mands V2 dataset (GSCV?2) [20]]. The data has 35 classes of
speech events and is extended by an additional background
class. Following [2]], we include 35 background categories of
noises, in total about 2,100 variable-length audio segments,
such as “motorcycle”, "Bus” and “Static” from [21] (FS2K).
The samples were obtained using the scripts provided by
NeMo [22]. We split the segments to the maximal length of
0.63 seconds and added them as an additional category to the
Speech Google Commands V2 dataset. We split the dataset
into train/validation parts and chose the best model based on
minimal validation accuracy. Although the dataset includes
about 23 hours of clean speech events which is x20 less
than 500 hours in Interspeech 2020 DNSChallenge dataset
[23]] used for ResectNet [1]] training, the model still produces
comparable results on the HAVIC evaluation dataset and
outperforms all previous methods on AVA-Speech test.

The audio segments are processed by extracting 32 Mel-
frequency cepstral coefficients (MFCC) features. The input
was augmented with time shift perturbations in the range of
T = [-5; 5] ms and white noise of magnitude [—90; —46] dB
with a probability of 80%. Additionally, SpecAugment [24]]
was applied with 2 continuous time masks of size [0; 25] time

steps, and 2 continuous frequency masks of size [0; 15] fre-
quency bands. SpecCutout [25] was also used with five rect-
angular masks in the time, and frequency dimensions as in
[2]. The model was trained with the SGD optimizer with
momentum = 0.9 and weight decay = 1le — 3. We utilized
the Warmup-Hold-Decay learning rate schedule [26] with a
warm-up ratio of 5%, a hold ratio of 45%, and a polynomial
(2nd order) decay for the remaining 50% of the schedule. A
maximum learning rate of 1e —2 and a minimum learning rate
of le — 4 were used. We trained all models for 150 epochs
on a single NVIDIA GeForce GTX 1080 Ti with a batch size
of 128. The model was implemented and trained with NeMo
[22].

3.2. Evaluation Method

The performance of SG-VAD was evaluated on the AVA
speech [18] and the HAVIC [[19] datasets. AVA speech con-
tains manually annotated 15-minute-long clips from 160
YouTube videos. We use the same subset of 122 out of
160 videos as authors in [2]], in total 30 hours of playback
time. The HAVIC dataset contains 72h of audio collected
from YouTube videos with manually annotated speech, mu-
sic, noise, and singing segments. We used all speech-related
segments as a target. Since our model is intended to predict
speech/non-speech for the full audio segment and not only
for a single frame, we are not required to apply any postpro-
cessing procedure and the predictions produced for full audio
segments of a clip accordingly to the timing provided in the
evaluation set for each segment. An exception is made for
too-long chunks that are split into shorter, up to 100 seconds
segments. To obtain results for the MarbleNet model on the
HAVIC dataset, we follow the postprocessing and inference
description in [2]]. To evaluate performance, we used the Area
Under Curve (AUC) of the Receiver Operating Characteristic
(ROC), denoted as AUC-ROC, which is a calibration-free
measure of detection performance.

3.3. Results

In table [I} we provide our evaluation results. We distinguish
between models by the train datasets used to train them:
Kopuklu et al., and Broaun et al. train their models on DNS
[23] dataset. Rho et al. presented the best results on the
Common Voice [27] subset with about 200 hours of speech
and Audioset subset with noise events [28, 29]. Kim et al.
exploits TIMIT dataset [30] augmented with noises.

3.4. Ablation Study

We provide an ablation study on our model’s architectural
and loss components. In the first setting (SG-VAD-R), we
use only the SG-VAD module and train it as a regression
model with mean squared error loss measured between the
model output and target label. We intentionally do not add



Model Params Training AUC-ROC
Dataset AVA | HAVIC

ResectNet 0.5x [1]] 4.5k DNS 88.6 83.5

ResectNet 1.0x [l1] 11.1k 90.0 84.9

Braun et al. [4] 1773k 92.4 86.8
NAS-VAD [3] 151k CV, AS 90.5 -
ADA-VAD [7] - TIMIT 85.3 -

MarbleNet [2] 88k GSCV2,FS2K | 85.8 80.4

SG-VAD (ours) 7.8k 94.3 83.3

Table 1. Our model significantly outperforms all recently
proposed models on AVA corpus. Furthermore, our model
trained on a smaller dataset outperforms ResectNet on AVA
and produces comparable results on HAVIC dataset

an extra output layer with Softmax normalization to follow
the inference setup of SG-VAD. The prediction is based on
the summing of learned gates for each time frame. We add
the auxiliary classifier (AC) in the second ablation version,
but the training is done without L, loss term. The third
setup includes the L, term but without supervision on the
SG-VAD module: instead of using L in (3) we minimize the
sum Ly (x;)+ Lee(x;) for all z; € X. Finally, our full model
result appears in the last row. From the ablation results in Ta-
ble 2] we can observe the indispensability of all model parts.
Once we add the second classifier module without consider-
ing all proposed loss terms (SG-VAD + AC), the model per-
formance degrades even lower than a deep regression model
(SG-VAD-R). In addition, SG-VAD supervision based on the
target labels encourages the model to learn to close as many
as possible gates for background noises where y; = 0, than
one without this supervision (SG-VAD+AC+L,).

An additional observation from the ablation study is that
all models achieve nearly the same validation accuracy, about
98%. However, the performance on real test sets varies. This
observation shows how the proposed method generalizes to
unseen domains.

Configuration Train Params AUC-ROC
AVA | HAVIC
SG-VAD-R 7.8K 87.9 74.9
SG-VAD + AC 80.4K 62.7 58.8
SG-VAD + AC + Ly 80.4K 93.2 80.8
Proposed Full 80.4K 94.3 83.3

Table 2. Ablation study results. During inference, each abla-
tion setup’s voice activity detection model has 7.8k learned
parameters. The second column indicates the number of
training parameters. The proposed model, with all of its com-
ponents, achieves the highest AUC results.

4. CONCLUSIONS

This work proposes a novel SG-VAD model for voice activ-

ity detection. Our model comprises two networks, the first
acts as a dynamic feature selection model trained to select

features that contain the speech signal. The second network
is a convolution-based classifier that predicts the speech label
for each segment. Both networks are trained simultaneously
to minimize the sum of two loss terms. We use the feature
selection module as our voice activity detector. Our method
achieves state-of-the-art results on the AVA-speech evaluation
dataset while reducing the size of the prediction netwrok. We
further evaluate the importance of our model’s components
through a series of ablation studies.
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