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ABSTRACT

As the third generation of neural networks, spiking neural net-
works (SNNs) are dedicated to exploring more insightful neu-
ral mechanisms to achieve near-biological intelligence. Intu-
itively, biomimetic mechanisms are crucial to understanding
and improving SNNs. For example, the associative long-term
potentiation (ALTP) phenomenon suggests that in addition
to learning mechanisms between neurons, there are associa-
tive effects within neurons. However, most existing meth-
ods only focus on the former and lack exploration of the in-
ternal association effects. In this paper, we propose a novel
Adaptive Internal Association (AIA) neuron model to estab-
lish previously ignored influences within neurons. Consistent
with the ALTP phenomenon, the AIA neuron model is adap-
tive to input stimuli, and internal associative learning occurs
only when both dendrites are stimulated at the same time.
In addition, we employ weighted weights to measure inter-
nal associations and introduce intermediate caches to reduce
the volatility of associations. Extensive experiments on pre-
vailing neuromorphic datasets show that the proposed method
can potentiate or depress the firing of spikes more specifi-
cally, resulting in better performance with fewer spikes. It
is worth noting that without adding any parameters at infer-
ence, the AIA model achieves state-of-the-art performance on
DVS-CIFAR10 (83.9%) and N-CARS (95.64%) datasets.

Index Terms— Adaptive Internal Association Neuron,
Spiking Neural Networks, Bionic Learning, Neuromorphic
Data

1. INTRODUCTION

Inspired by the learning mechanisms of the mammalian brain,
spiking neural networks (SNNs) are considered a promising
model for artificial intelligence (AI) and theoretical neuro-
science [1]. In theory, as the third generation of neural net-
works, SNNs are computationally more powerful than tradi-
tional artificial neural networks (ANNs) [2, 3].
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author: Tianjiang Wang.)
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Fig. 1. The associative long-term potentiation phenomenon in
hippocampal slices of rats. (A) Two different groups of Schaf-
fer collateral presynaptic fibers (stimulation I and stimulation
II) are stimulated while performing intracellular recording of
CA1 (cornu Ammonis) pyramidal cells. (B) The average re-
sponse of CA1 pyramidal cells to a stimulus from point II is
observed. The curve depicts the membrane voltage change
after point I and point II are stimulated separately and simul-
taneously for ten minutes under control conditions [6].

Essentially, SNNs are dedicated to exploring more in-
sightful neural mechanisms to achieve near-biological intelli-
gence. The most representative ones are the leaky integrate-
and-fire (LIF) model [4, 5] and spike-timing-dependent plas-
ticity (STDP) rules [1]. The LIF neuron model is a trade-off
between biomimicry and computability. It can reflect most
properties of biological neurons, while the calculation is rel-
atively simple. STDP is a temporally asymmetric form of
Hebbian learning that arises from the close temporal corre-
lation between the spikes of two neurons, presynaptic and
postsynaptic [3]. Both of them inspire us to understand and
improve SNNs from biological mechanisms.

The interesting associative long-term potentiation (ALTP)
phenomenon [6] has recently attracted our attention, as shown
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in Fig. 1 (A). When points I and II were stimulated at the
same time, the response of point II was enhanced, but not
when stimulated separately. The ALTP phenomenon sug-
gests that in addition to learning mechanisms between neu-
rons, there are associative effects within neurons.

However, most biologically inspired methods mainly fo-
cus on the learning between neurons and lack the exploration
of associative effects within neurons. For example, spa-
tiotemporal backpropagation based method [7] with surro-
gate gradient, time surfaces based method [8] to process the
temporal information of SNNs, membrane potential based
method [5] to rectify the distribution, membrane time con-
stant based method [9] to avoid manual adjustment of neuron
parameters, axonal delay based method [10] to simulate a
short term memory, and other novel method [11, 4].

In this paper, we propose an adaptive internal associa-
tive (AIA) neuron model to establish neglected associations
within neurons. Consistent with the ALTP phenomenon,
the AIA neuron model is adaptive to input stimuli, and in-
ternal associative learning occurs only when both dendrites
are stimulated simultaneously. Furthermore, we measure
the strength of internal associations by weighting gradients
passed between neurons with input weights. Therefore, the
effect is positively correlated with input weights, as described
in Eq 7. In addition, we introduce intermediate caching to
reduce the volatility of associations. Extensive experiments
demonstrate that the AIA neuron model can potentiate or de-
press the firing of spikes more specifically. This biomimetic
model performs better with fewer spikes, which is closer to
the efficiency of the brain. It is worth noting that without
adding any parameters at inference, the AIA model achieves
state-of-the-art performance on DVS-CIFAR10 (83.9%) and
N-CARS (95.64%) datasets.

The closest works to the AIA model are the learning rules
of Hebbian and STDP [1]. However, they both only focus on
the learning mechanism between neurons, while AIA estab-
lishes the associations inside neurons.

2. METHOD

2.1. LIF Neuron Model

For spiking neurons, the neuronic membrane potential in-
creases with the accumulation of weighted spikes, and an
output spike is generated once the membrane potential ex-
ceeds a threshold. The membrane potential of widely used
LIF model [4] is formulated as:

τm
du

dt
= − (u− Vrest) +Rm · I(t), u < Vth

u = Vrest

o = δ(t− ti)

}
, u ≥ Vth

(1)

where τm = RmCm is the membrane time constant, Rm and
Cm are resistance constant and capacitance constant, respec-

tively. u is the membrane potential, I(t) is the input current,
Vth and Vrest are the spiking threshold and resting potential.
Once u reaches Vth at ti, a spike is generated and u is reset
to Vrest, which is usually taken as 0. The output spike o is
described by the Dirac delta function δ(x). The input will
be summed to I(t) by the dendrite response weight w. By
absorbing the 1 − dt/τm and 1/Cm constants into response
weights w and leakage coefficient λ respectively [7], the dis-
crete form of Eq. 1 is described as:

un+1,t+1
i =λun+1,t

i (1− on+1,t
i ) + xn+1,t+1

i

xn+1,t+1
i =

∑
j

wn+1
ij on,t+1

j

on+1,t+1
i =H(un+1,t+1

i − Vth)

(2)

where n denotes the n-th layer and wij is the synaptic weight
from the j-th neuron in pre-layer n to the i-th neuron in the
post-layer n + 1. xi denotes the weighted input, and H(x)
is the Heaviside step function, whose gradient is given by the
surrogate method [7].

2.2. Adaptive Internal Association Neuron Model

Motivation The phenomenon of associative long-term po-
tentiation [6] in Fig. 1 and the associated long-term depressive
phenomenon [12] illustrates that there is an associative effect
within neurons when stimulated at the same time. And the
effect is positively correlated with input weights. These ob-
servations inspire us to explore the corresponding associative
learning mechanisms within neurons.

AIA Neuron Model As shown in Fig. 1, between different
input synapses within a single neuron, associative learning
occurs only when both input synapses are stimulated. Since
the biological mechanism of the ALTP phenomenon is un-
clear, we hypothesized that a function f(x) acting on den-
drites could establish stimulus-adaptive associative learning.
We will discuss the form of this function in Sec. 2.3. Adding
the associative learning term f(x) to Eq. 2, the adaptive inter-
nal associative (AIA) neuron model can be formulated as:

un+1,t+1
i =λun+1,t

i (1− on+1,t
i ) + f(xn+1,t+1

i )

xn+1,t+1
i =

∑
j

wn+1
ij on,t+1

j

on+1,t+1
i =H(un+1,t+1

i − Vth)

(3)

2.3. Derivation of Gradients

For the LIF model, the gradient of the weights is given by:

∆wLIF
ij =

∂L

∂wn+1
ij

=
∂L

∂un+1,t+1
i

∂un+1,t+1
i

∂xn+1,t+1
i

∂xn+1,t+1
i

∂wn+1
ij

=
∂L

∂un+1,t+1
i

on,t+1
j

(4)
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Fig. 2. The network Framework. Data and gradients flow along space and time, and ∆wAIA is determined by the input weights.

where L is the loss function. For the AIA neuron model, the
gradient of the weights is given by:

∆wAIA
ij =

∂L

∂wn+1
ij

=
∂f(xn+1,t+1

i )

∂xn+1,t+1
i

∂L

∂un+1,t+1
i

on,t+1
j

(5)
Combining the observations in motivation, we can set the
function f ′(x) = x to construct a stimulus-adaptive internal
associative neuron model. The ∆wAIA

ij is formulated as:

∆wAIA
ij =

(∑
k

wn+1
ik on,t+1

k

)
∂L

∂un+1,t+1
i

on,t+1
j (6)

where k represents the neuron connected to neuron i. Note
that o ∈ {0, 1}, Eq. 6 can be expressed as:

∆wAIA
ij = on,t+1

j ∗
∑
k

on,t+1
k wn+1

ik ∆wLIF
ik (7)

When the neuron j is in the resting state(oj = 0), the weight
wij remains unchanged. When neuron j inputs a stimulus
(oj = 1), all neurons that simultaneously input a stimulus
(ok = 1) affect wij . In other words, only when neuron i is
stimulated by both the j-th and k-th neurons will the corre-
sponding associative effects be established within the neuron.

In addition, Eq. 7 measures the association influence with
minimum cost by multiplexing the weights and the gradients
between neurons. It turns out that the greater the synaptic
response to the stimulus, the stronger the effect of associative
learning, which is also consistent with the observations. Fig. 2
shows the network framework, and Eq. 3 and Eq. 7 represent
computations in the forward and backward respectively.

2.4. Intermediate Cache

In practice, the gradient swings between 0 and wn+1
ik ∆wLIF

ik ,
which may cause the problem of “dead neurons”, so we in-
troduce an intermediate cache variable β. Specifically, let
f ′(x) = β, the gradients of ∆wAIA

ij and β are:

∆wAIA
ij =

∂L

∂wn+1
ij

= on,t+1
j ∗ β∆wLIF

ij (8)

∂L

∂β
=
∑
k

on,t+1
k wn+1

ik ∆wLIF
ik (9)

It can be seen that, after adding the intermediate cache, β
accumulates gradients in Eq. 7 overall stimulated synapses
and applies this association effect only to stimulated synapses.
It is worth noting that the intermediate cache β, as an auxiliary
tool for saving gradients, can be merged intow for calculation
at inference time, so it will not bring additional parameters.

3. EXPERIMENTS

Extensive experiments are conducted to demonstrate the su-
periority of the AIA neuron model. For a fair comparison,
a LIF neuron model with the same parameters is used as the
baseline. Specifically, the weights are initialized by kaiming
distribution. The threshold and leakage coefficients λ of neu-
rons are 1 and 0.5 respectively. Adam optimizer is introduced
to adjust the learning rate, which is initially set to 1× 10−3.

3.1. Comparison with the State-of-the-Art

As shown in Tab. 1, we surpass previous state-of-the-art
methods on DVS-CIFAR10 [20], N-Caltech101 [21], N-
CARS [8] neuromorphic datasets. DVS-CIFAR10 contains
10,000 samples, carrying noise and blur caused by event cam-
eras. We resize the samples to 64 × 64 and achieve 83.9%
accuracy. It is worth noting that NDA is the best performer
in the previous work, but its sample size is 128× 128. To the
best of our knowledge, the AIA neuron model achieves state-
of-the-art performance on DVS-CIFAR10 dataset among all
SNNs. N-Caltech101 is a spiking version of the original
frame-based Caltech101 dataset. N-CARS is a large real-
world event-based car classification dataset extracted from
various driving courses. On these two datasets, we resize the
samples to 48 × 48, reaching the accuracy of 80.07% and
95.64% respectively. In conclusion, the AIA model achieves
leading performance by establishing associations within neu-
rons, which in turn illustrates the effectiveness of biomimetic
internal associations.



Table 1. Performance of AIA neuron model and the SOTAs on CIFAR10-DVS, N-Caltech101 and N-CARS datasets.
Network Method Reference Model CIFAR10-DVS N-Caltech101 N-CARS

CNNs-based
RG-CNNs [13] TIP 2020 Graph-CNN 54.00 61.70 91.40
SlideGCN [14] ICCV 2021 Graph-CNN 68.00 76.10 93.10
ECSNet [15] T-CSVT 2022 LEE→MA 72.70 69.30 94.60

SNNs-based

HATS[8] CVPR 2018 HATS-SVM 52.40 64.20 81.0
Dart[16] TPAMI 2020 SPM-SVM 65.80 66.80 -
STBP [7] AAAI 2021 Resnet-19 67.80 - -
PLIF [9] ICCV 2021 7-layer 74.80 - -

Dspike [17] NeurIPS 2021 ResNet-18 75.40 - -
AutoSNN [18] ICML 2022 - 72.50 - -

RecDis [5] CVPR 2022 Resnet-19 72.42 - -
DSR [4] CVPR 2022 VGG-11 77.27 - -

NDA [19] ECCV 2022 VGG-11 81.70 78.20 90.1

AIA - VGG-9 83.90 80.07 95.64

3.2. Analysis of AIA Neuron Model

Compared with other neuron models Ablation experi-
ments are performed on CIFAR10-DVS and N-Caltech101
datasets to further compare the effects of AIA and other
neuronal models. We employ a publicly available implemen-
tation of PLIF neurons [9], which sets the membrane time
constant as a trainable variable. As shown in Tab. 2, the AIA
neuron model achieves the accuracy of 79.59% and 83.5%,
surpassing the most commonly used neuron models under
the same parameters. In addition, the intermediate cache also
improves the AIA model (Cached AIA).

Insightful variations of the AIA model To gain further in-
sight into the workings of AIA neurons, we perform some
analysis on the N-Caltech101 dataset. As shown in Fig. 3 (a),
we calculate the weight distribution of the AIA model and the
LIF model respectively, and obtain the normalized changes in
different intervals. Red indicates that the number of weights
in the interval is increasing, and blue indicates that it is de-
creasing. It turns out that the weights escape from intervals
close to 0, implying a larger change in membrane voltage. In
other words, AIA neurons can more effectively potentiate or
depress the firing of spikes, resulting in better extraction of

Table 2. The performance of different neuron models on N-
Caltech101 datasets and CIFAR10-DVS datasets.

Neurons N-Caltech101(%) CIFAR10-DVS(%)

LIF 78.13 82.5
IF 75.94 81.9

PLIF 75.58 79.0
AIA 79.59 83.5

Cached AIA 80.07 83.9
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Fig. 3. Variations in weight distribution and number of spikes
after using AIA neurons compared to LIF neurons.

key features.
In addition, the change in the number of spikes is shown in

Fig. 3 (b). The AIA model significantly affects the number of
fired spikes, especially in feature extraction layers. Notably,
the number of fired spikes is significantly reduced overall, im-
plying that the AIA neuron model performs better with fewer
spikes. It indicates that the biomimetic internal association
mechanism inherently improves the efficiency and biological
plausibility of the model.

4. CONCLUSION

Inspired by the ALTP phenomenon, we propose a novel
adaptive internal association (AIA) neuron model. This
biomimetic model achieves state-of-the-art performance on
neuromorphic datasets. In addition, the intermediate cache is
introduced to reduce volatility. The insightful analysis shows
that AIA neurons can more effectively potentiate or depress
the firing of spikes and perform better with fewer spikes. And
the proposed neuron model can provide the basis for more
efficient and biologically plausible spiking neural networks.
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