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ABSTRACT

Most of the existing neural-based models for keyword spot-
ting (KWS) in smart devices require thousands of training
samples to learn a decent audio representation. However, with
the rising demand for smart devices to become more person-
alized, KWS models need to adapt quickly to smaller user
samples. To tackle this challenge, we propose a contrastive
speech mixup (CosMix) learning algorithm for low-resource
KWS. CosMix introduces an auxiliary contrastive loss to the
existing mixup augmentation technique to maximize the rel-
ative similarity between the original pre-mixed samples and
the augmented samples. The goal is to inject enhancing con-
straints to guide the model towards simpler but richer content-
based speech representations from two augmented views (i.e.
noisy mixed and clean pre-mixed utterances). We conduct our
experiments on the Google Speech Command dataset, where
we trim the size of the training set to as small as 2.5 mins per
keyword to simulate a low-resource condition. Our experi-
mental results show a consistent improvement in the perfor-
mance of multiple models, which exhibits the effectiveness of
our method.

Index Terms— Keyword Spotting, Data Augmentation,
Contrastive Learning, Low-resource

1. INTRODUCTION

The inbuilt voice command system found in many smart de-
vices has brought greater convenience to our lives. For in-
stance, we can effortlessly activate the devices with a sin-
gle wake-up command like “Hey Siri” to schedule an impor-
tant meeting later in the afternoon. Obtaining such a system
that recognizes these commands involves building a keyword-
spotting (KWS) model to detect predetermined words in a
continuous utterance. Operationally, the system converts the
raw audio into temporal-spectral features before passing them
to an acoustic neural net to predict the best keyword classes
that minimize the error rate.

This work was supported by Alibaba Group through Alibaba Innovative
Research (AIR) Program and Alibaba-NTU Singapore Joint Research Insti-
tute (JRI), Nanyang Technological University, Singapore.

Recently, there have been multiple successes in devel-
oping highly accurate KWS networks [1, 2, 3, 4]. These
network architectures include utilizing transformer blocks [5,
6], convolutional blocks [7, 8], auto-regressive layers [9] and
hybrid structures of these [9, 10] to create a deep acoustic
neural-based model. Most of these neural-based models face
the challenge of having inadequate annotated training data.
Learning a decent audio representation for the pre-defined
keywords usually requires thousands of training samples to
avoid over-fitting [11], especially for deeper networks. Nev-
ertheless, with the rising demand for personalized smart de-
vices, there is a need for customized KWS systems to adapt
quickly with limited user samples.

To overcome this challenge, researchers have explored
many data augmentation techniques, such as mixing tiny
noise distortion, time shift, time stretch and SpecAugment
[12, 13], to improve the generalizability of deep neural net-
works under low-resource conditions. These augmentations
inject small variability to the data instances and prevent
the model from memorizing the dataset, thus reducing the
tendency of overfitting. However, there are limited types of
perturbation available in speech preprocessing, which restrain
the diversity of the data augmentations.

In this paper, we attempt to improve the robustness of
KWS model under low-resource conditions. Specifically, we
aim to train a deep network that achieves better performance
on very small training sets (i.e., 2.5 mins, 5 mins, 10 mins).
To achieve this, we propose a contrastive speech mixup (Cos-
Mix) learning algorithm for low-resource KWS, which is in-
spired from the input mixup algorithm [14]. The mixup algo-
rithm is a regularization technique that fits the network with
two linearly interpolated samples to their corresponding soft
labels. Although the vanilla method has been demonstrated to
be effective in several works, [15, 16] have shown that mix-
ing samples sometimes produce spatially ambiguous and un-
natural instances which confuses the model, especially when
the model attempts to locate non-existent spatial information.
Hence, we introduce an auxiliary contrastive loss that imposes
an additional constraint to maximize the relative similarity
of the original individual samples to the augmented version
(which we denote as positive pairs). With the contrastive
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loss, the pre-mixed sample representation provides supervi-
sion to the model to pull the agreeing attributes between the
positive mixed-individual samples. This supervision reduces
ambiguity by providing awareness of the mixing utterances.
Furthermore, it also offers some sense of enhancement, simi-
lar to [17, 18], to generate content-rich speech encoding. Our
experimental results show that CosMix obtains a consistent
performance improvement over the vanilla mixup augmenta-
tion over various KWS models on variant training data sizes.
Among the compared models, Keyword ConvMixer performs
the best with 90% accuracy on 5% (2.5 mins per keyword) of
the training data. The overall results exhibit the effectiveness
of our proposed CosMix learning algorithm despite the sim-
plicity of its design and incurring negligible computational
overhead.

2. RELATED WORK

Multiple attempts have been made to improve the vanilla
mixup algorithm in different fields. In image classification,
Manifold Mixup [19] leverages semantic interpolations as
an additional training signal to achieve smoother decision
boundaries at multiple levels of representation. CutMix [15]
replaces a region of the image with a patch sampled from
another training image to preserve the naturalness of train-
ing images and enhances the model’s robustness against
input corruptions and its out-of-distribution detection perfor-
mances. In speech signal processing, MixSpeech [20] shares
similarities with Mixup, mixes two input speech signal se-
quences and combines two loss functions regarding the text
output to facilitate the application of the mixing algorithm
in sequential tasks such as ASR. Moreover, L-mix [21] uti-
lizes the instance mix (i-mix) regularization for training a
self-supervised speaker embedding system to improve the
training stability and speaker verification performance. In
contrast, our work focuses on a different variant which we
have shown to be effective for low-resource keyword spotting.

3. METHODOLOGY

3.1. Mixup Augmentation

The vanilla mixup augmentation employs the principle of vic-
inal risk minimization to encourage the classifier to behave
linearly within training examples. This attribute reduces un-
desirable variability when performing inferences on unseen
instances. During data pre-processing, we draw two audio in-
stances at random from the training set to construct a virtual
training example by

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(1)

where i, j ∈ 1, ..N denotes the indices of the training set, x
and y represent the raw input waveform and one-hot label en-
codings, respectively. λ ∼ Beta(α, α), for α ∈ (0,∞) is the

Fig. 1. An illustration of the model architecture for con-
trastive speech mixup (CosMix). The proposed approach in-
cludes audio mixup augmentation and contrastive learning for
the mixup instances, where Project refers to the projector that
maps the latent vector embeddings to the projected dimension
of 128, and sg denotes the stop-gradient function.

interpolating parameter that determines the amount of con-
tent to be linearly mixed. Given the virtual input-label pairs
(X̃, ỹ), with X̃ being the STFT temporal-spectral features of
x̃, we compute the loss as follows

Lmix = λ · CE(f(X̃), yi) + (1− λ) · CE(f(X̃), yj) (2)

where f(.) is an acoustic encoding model, and CE refers to
the standard cross-entropy loss.

3.2. The CosMix Learning Algorithm

Despite succeeding in a wide range of speech applications,
the mixup augmentation may produce highly distorted signals
from two overlapping speeches that are not natural or unfavor-
able for the task. The noisy input may create confusion that
causes peculiar spikes in the model errors, which may domi-
nate the effective gradient and hurt the network convergence
[15, 16]. To tackle this problem, we introduce an auxiliary
component that uses contrastive learning to maximize the rel-
ative similarity between the original mixing samples and the
augmented samples. Our method is inspired by [17] which
uses the agreeing attributes between two augmented (posi-
tive) views to enhance content-rich speech encoding. In this
case, we make use of two mixed utterances with the afore-
mentioned training method which fosters minimal (i.e. less
complexity) and sufficient (i.e. higher fidelity) embeddings.
This drives the model to generate more effective representa-
tions and attain greater generalizability under low-resource
conditions.

Specifically, the training procedure utilizes parallel sam-
ples of two utterances Xi, Xj and their mixup X̃ . We apply
random augmentations that perform independently on three
parallel samples. Subsequently, we pass them into a shared
encoding network where the bottleneck representations will
be projected and used in contrasting with the mixup and pre-
mix individual pair. At the same time, only the mixup repre-
sentations are sent for keyword prediction. An illustration of



the training framework is presented in Fig. 1. Then, to com-
pute the loss for contrastive learning, we perform L2-norm
on all projected embeddings before utilizing the mean square
error to measure the similarity between the normalized pro-
jections. We define the loss by

Lcos(X̃,Xr) = − 〈fp(X̃), fp(Xr)〉
‖fp(X̃)‖2‖fp(Xr)‖2

(3)

where fp(.) is the projector of the model and r ∈ {i, j}.
Additionally, we implemented a mixup ratio of 50% in

this work, where there is a half chance that the model is learn-
ing without mixup. Nevertheless, we included contrastive
loss with its augmented views to reduce variability with per-
turbed samples to achieve less complex embeddings. There-
fore, the relative contrastive loss is weighted as follows

Λr =


λ, if r = i & r 6= j

1− λ, if r = j & r 6= i

1, if r = i = j

(4)

and the complete training loss is given by

L = Lmix + β
∑

r∈{i,j}

(
Λr · Lcos(X̃,Xr)

)
(5)

where β is the penalizing parameter that weighs the contribu-
tion of the contrastive loss, which is set to 0.5 in this work.

4. EXPERIMENT
4.1. Dataset

In this work we utilize the Google Speech Command V2
dataset [22]. The dataset contains a total of 105,000 utter-
ances with 35 unique words. Each audio sample is stored as
a one-second (or less) wav format file sampling at 16kHz. To
ensure the reproducibility of our code, we employ the official
train, validation, and test split provided for the subset of 10
keyword classes, which covers the words: “up”, “down”,
“left”, “right”, “yes”, “no”, “on”, “off”, “go” and “stop”.
To simulate low-resource KWS conditions, we partition the
utterances according to the speaker for each word and trim
the size of the corresponding training sets. In our case, we
experiment with 5%, 10%, 20%, 30%, and 50% of the train
set. The trimming corresponds to an average of 2.5 mins,
5 mins, 10 mins, 15 mins, and 25 mins training data for each
word. By trimming the speaker partition, we reduce the diver-
sity of our training data and increase the learning difficulty to
adapt to a wider population in actual deployment. This size of
training data approaches what would be available for training
a personalized KWS model in real applications.

4.2. Experimental Setup

Input Feature - We convert all wav files to a 64-dimensional
log Mel filterbank (FBank) with a window size of 25ms and

Fig. 2. t-SNE plots that compare the embeddings on different
techniques with 20% train set of KWT-3 (after 200 epochs).

10ms shift. We fixed the resolution of our FBank at 98 × 64
(i.e. equivalent to 1s of the utterance). Commands shorter
than 1s will be zero-padded to the right. During training, we
augment our samples, which includes random time shifting
in the range of -100 to 100ms, and random time stretching
[23] between the factor of 0.9 to 1.1. Furthermore, we apply
SpecAugment with the masking size for time and spectral of
13 and 7, respectively. Lastly, the mixup ratio for our main
experiment in Table 1 is 0.5 with a Beta(10, 10) distribution.
This applies to the vanilla mixup and CosMix.
Training Details - In our experiment, we picked two popu-
lar categories of neural-based models that are frequently used
in the industry, namely, the transformer-based (i.e. KWT-1
and KWT-3 [5]) and convolutional-based (i.e. Keyword Con-
vMixer [7] and ResNet18 [24]) KWS networks. These mod-
els represent the recent state-of-the-art for different condition-
ing environments with various model sizes and complexity.
We observe that the most lightweight model, ConvMixer [7],
consists of only 0.1M parameters. Additionally, we add a pro-
jector to every model that maps the latent vector embeddings
to a projected dimension of size 128. The projector consists
of a linear dense block with ReLU activation. All models are
trained with a batch size of 128. The initial learning is 5e-3,
and we employ a step decay of rate 0.85 every four epochs
from the 5th to 70th epoch. Lastly, we use the Adam opti-
mizer and binary cross-entropy loss in the optimization.

5. EXPERIMENTAL RESULTS

We use the Google Speech Command official test set (10
classes) to evaluate the model performance. The baseline
model in our experiment learns without any mixup augmen-
tation. Nevertheless, we also compare CosMix to the vanilla
mixup augmentation to determine the performance gain con-
tributed by the contrastive loss in CosMix model training.
Table 1 shows the accuracy of our KWS model over four dif-
ferent architectural builds. We observe that all models suffer
performance degradation when training on a small dataset.



Table 1. Experimental results on Google Speech Command-V2 (10 classes) testing dataset. We measure the accuracy of the
keyword classification on the official test set over the different sizes (i.e. 5%, 10%, 20%, 30%, 50%) of training data.

Model Model Size (M) Augmentation
Size of Training Data (% of Train Set)

5% 10% 20% 30% 50%
(2.5 mins) (5 mins) (10 mins) (15 mins) (25 mins)

ResNet18 [24] 11.9
Baseline 0.828 0.902 0.934 0.963 0.971

Vanilla Mixup 0.822 0.909 0.947 0.968 0.978
CosMix (Ours) 0.841 0.919 0.955 0.970 0.981

KWT-3 [5] 5.4
Baseline 0.465 0.613 0.635 0.677 0.732

Vanilla Mixup 0.524 0.607 0.643 0.715 0.766
CosMix (Ours) 0.566 0.687 0.765 0.804 0.841

KWT-1 [5] 0.6
Baseline 0.683 0.836 0.882 0.927 0.950

Vanilla Mixup 0.625 0.853 0.892 0.933 0.951
CosMix (Ours) 0.701 0.863 0.911 0.935 0.960

Keyword ConvMixer [7] 0.1
Baseline 0.887 0.926 0.954 0.965 0.971

Vanilla Mixup 0.897 0.939 0.963 0.973 0.978
CosMix (Ours) 0.902 0.940 0.962 0.973 0.976

The KWT-3 sees the largest performance degradation, achiev-
ing an accuracy of only 46.5% with baseline training at 5%
train data. Nevertheless, CosMix has generally achieved the
best performance over various training set sizes regardless
of the model used. Moreover, the performance gain is larger
with less training data (5% size), where the relative increase
in performance is as high as 21.7% for KWT-3. Studying the
individual models, we notice that the transformer-based mod-
els are more vulnerable to performance degradation in the
low-resource setting. This could be due to the lack of training
samples to learn the highly complex attention mechanism.
Even in this case, CosMix helped to alleviate this problem
with better regularization. Finally, the convolutional-based
models perform the best, with Keyword ConvMixer attaining
the highest score of 90% accuracy on the 5% training set
using the CosMix.

To investigate the quality of the acoustic representations
of different techniques, we visualize the embeddings using t-
SNE plots in Fig. 2 with KWT-3 training on 20% train data.
The baseline setup managed to differentiate “right” and “yes”
from the other commands. However, the model failed to do
so for the rest. The clusters become slightly spaced as em-
beddings improved with mixup augmentation. The clusters
in CosMix are the most separable, with only short consonant
words are tied together, which demonstrates our approach to
be effective in learning precise and content-rich representa-
tions.

5.1. Ablation Study

In this section, we investigate the impact of the performance
using different parameters on the two mixup algorithms. In
particular, we look at changing the mixup ratio and the in-
terpolating weights derived from the beta distribution. When
α in the beta distribution, Beta(α, α), is less than 1, we ob-
tained a convex shape curve where the amount of audio mix-

ing tends to dominate on one side. However, when α is bigger
than 1, the curve becomes more concave, and it is more likely
that the two audio are mixed proportionally. Table 2 presents
the result of our findings. Firstly, Beta(10, 10) is generally
better than Beta(0.5, 0.5), which suggests that the model can
learn more effectively with an equal proportionally mixed au-
dio sample for KWS task. Secondly, the optimal mixing ratio
differs between Mixup and CosMix. Mixup has the best per-
formance with a mixing ratio of 30%, whereas CosMix got its
best result at 50%. Lastly, users should be careful when per-
forming hyper-parameters tuning as we observed two peaks in
the model performance. This seems to be highly influenced
by the bi-modal distribution of beta.

Table 2. Accuracy on official test set based on 20% train set
of ResNet18 over different mixing ratio of the mixup.

Mixing Ratio (%)
Beta (0.5, 0.5) Beta (10, 10)

Mixup CosMix Mixup CosMix
10 0.940 0.932 0.936 0.946
30 0.949 0.940 0.953 0.953
50 0.941 0.958 0.947 0.955
70 0.946 0.945 0.945 0.952

100 0.938 0.949 0.929 0.924

6. CONCLUSION

In this paper, we have proposed CosMix, a novel data aug-
mentation strategy for low-resource KWS. The CosMix
model training methodology makes use of contrastive loss
to mitigate the unwanted side effects of a noisy training sig-
nal arising from traditional mixup training. CosMix is able
to improve model performance under low-resource condi-
tions for a variety of model sizes. Thus, CosMix is effective
as a general approach to boosting performance under low-
resource conditions for applications such as personalized
KWS systems for smart devices.
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