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Abstract

We introduce Wav2Seq, the first self-supervised approach to pre-train both parts
of encoder-decoder models for speech data. We induce a pseudo language as a
compact discrete representation, and formulate a self-supervised pseudo speech
recognition task — transcribing audio inputs into pseudo subword sequences. This
process stands on its own, or can be applied as low-cost second-stage pre-training.
We experiment with automatic speech recognition (ASR), spoken named entity
recognition, and speech-to-text translation. We set new state-of-the-art results for
end-to-end spoken named entity recognition, and show consistent improvements
on 20 language pairs for speech-to-text translation, even when competing methods
use additional text data for training. On ASR, our approach enables encoder-
decoder methods to benefit from pre-training for all parts of the network, and
shows comparable performance to highly optimized recent methods.

1 Introduction

Self-supervised pre-trained models have recently become a core part of speech models [5, 10, 13, 21,
26, 51, 56, 62], leading to impressive performance on a wide variety of speech tasks [41, 53, 58, 66].
This trend mirrors recent success in natural language processing [NLP; 16, 33, 36, 44, 48, 49] and
computer vision [CV; 8, 11, 24, 34, 63].

Most of these approaches rely on pre-training an encoder to create expressive representation of
input data. If a sequential decoder is needed for downstream tasks (i.e., for generative tasks), it is
often trained with task-specific supervised data. The most common approaches for automatic speech
recognition (ASR) follow this encoder-decoder paradigm [6, 14, 22, 23, 45, 61], regardless if they
use sequence transducers [20] or sequence-to-sequence [9, 12, 55] architectures. Because all existing
self-supervised learning approaches for speech focus on pre-training an encoder model only, when
adapted to an encoder-decoder architecture, the decoder has to be either randomly initialized or
borrowed from a pre-trained NLP decoder [4, 60].

In this paper, we propose Wav2Seq, the first self-supervised approach to jointly pre-train the encoder
and decoder. We automatically induce pseudo subwords that form a compact discrete representation
of spoken language. We treat these as audio transcripts in a pseudo ASR task, and use them as the
targets for Seq2Seq learning (see Fig. 1). When fine-tuned on a downstream task (e.g., ASR or speech
translation), the input and output embedding layers are replaced in order to adapt to natural language.

We conduct extensive experiments on ASR, spoken named entity recognition (SNER), and speech-to-
text translation (ST) tasks. Focusing on settings with limited labeled audio data (i.e., 10h or less), our
ASR results show that with a pre-trained encoder only, CTC models outperform encoder-decoder
models significantly in few-example scenarios; however, Wav2Seq boosts the performance of encoder-
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Figure 1: Pseudo ASR task. The Wav2Seq model is pre-trained to transcribe an audio input into
a sequence of pseudo language tokens. The embedding layers are replaced during fine-tuning on
real ASR or speech translation tasks. “<sos>” is the start-of-sequence token and “<eos>” is the
end-of-sequence token. See Fig. 2 for how the pseudo language tokens are generated.

decoder models and closes this gap. When we apply Wav2Seq as a low-cost second-stage pre-training
method, models based on existing pre-trained encoders (e.g., HuBERT) achieve even better results.
On the SLUE-VoxPopuli SNER benchmark, Wav2Seq initialized with HuBERT achieves the best
end-to-end results. For ST tasks, we conduct experiments on four from-English language pairs and
16 to-English pairs with both low- and high-resource setups. Wav2Seq consistently outperforms
models initialized with HuBERT or XLS-R pre-trained models and achieves similar BLEU scores as
models trained on additional machine translation annotated text data. Pre-trained models and code
are available at https://github.com/asappresearch/wav2seq.

2 Related Work

Speech-to-Text Models Automatic speech recognition (ASR) and speech-to-text translation (ST) are
two of the most commonly studied speech-to-text tasks. The former produces a monotonic mapping
while the latter may involve re-ordering (e.g. translating English to German). When re-ordering
exists, it is advantageous to use sequence-to-sequence (Seq2Seq) models [55] with encoder-decoder
attention [7, 9], such as doen in popular open-source speech translation toolkits [28, 57].

When the mapping is monotonic, such as with ASR, various approaches are applicable. Connectionist
temporal classification [CTC; 19] is one of the simplest and efficient approaches. It only requires
an encoder that generates a sequence of feature vectors where each feature vector represents the
input within a time window. A linear classifier can be applied to classify each feature vector into
a character and the repeated and blank characters will be removed. When decoding with an LM,
beam-search can also be used. CTC is used in various systems [1, 38, 54] and is becoming the default
approach to fine-tune a self-supervised pre-trained model such as wav2vec 2.0 [5]. The sequence
transducer [20] is another architecture dedicated to monotonic mapping in ASR. Similar to Seq2Seq,
it has an encoder for audio inputs and an auto-regressive decoder for text inputs; however, the decoder
does not have access to the full encoded speech features. The decoder starts with using the speech
feature of the first frame from the encoder and decides either to emit a text token or shift to use
the speech feature of the next frame. State-of-the-art supervised speech models are based on the
transducer framework [22, 23].

Text-to-Text Encoder-Decoder Pre-training In NLP, it has been observed that pre-trained Seq2Seq
models outperforms pre-trained encoders on text generation tasks [33, 49] despite being less com-
petitive in discriminative tasks. Lewis et al. [33] introduced BART which is a Seq2Seq Transformer
pre-trained on a text denoising task. Xu et al. [64] extend BART to a multilingual setup and introduce
mBART. Concurrently, T5 [49] is pre-trained on a large collection of NLP tasks, showing effective
task transfer behavior [47, 50, 67].
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Speech Self-supervised Learning CPC [56] and wav2vec [51] are two early approaches for self-
supervised speech representation learning based on contrastive loss. Wav2vec 2.0 [5] is the first
self-supervised model to outperform purely supervised approaches on ASR. Instead of directly
reconstructing masked features, it is uses a contrastive loss — distinguishing the quantized version
of the correct features from several negative samples. Lai et al. [31] show that many of the weights
in wav2vec 2.0 are redundant and can be pruned. Wu et al. [62] provides a deeper understanding
of the efficiency of various components of wav2vec 2.0 and propose SEW-D, a more compact and
efficient variant. Hsu et al. [27] found that adding a loss to intermediate layer improves the quality
of wav2vec 2.0 pre-training. Rather than contrastive learning, Hsu et al. [26] propose HuBERT, a
self-supervised approach based on masked language modeling. Unlike wav2vec 2.0 using online
quantization, HuBERT extracts speech features and clusters them offline. The model is trained to
predict the cluster indices of the features at the masked positions. WavLM [10] extends HuBERT by
using a larger dataset with non-audiobook audios and adding noise to the audio during pre-training.
W2v-BERT [13] further combines these two approaches (contrastive learning and masked language
modeling) and sets a new state of the art in ASR. Concurrently to our paper, Baevski et al. [6]
introduce data2vec which is trained to match the outputs of an exponentially moving averaged teacher
(similar to BYOL [21] and DINO [8] in CV) and works for NLP and CV data as well. Ao et al.
[2] introduce SpeechT5, a multimodal encoder-decoder model, which is pre-trained on both text
and speech data. Unlike our approach, their decoder is trained to reconstruct the log Mel-filterbank
features of the speech audio.

3 Self-supervision using Pseudo Subwords

3.1 Pseudo ASR

Seq2seq ASR models use an encoder to extract speech features and a decoder to generate text tokens
conditioned on the speech features. Given an audio input X = (x1, x2, ..., xm) ∈ X , the ASR model
f : X → Y is trained to transcribe it into text tokens Y = (y1, y2, .., yn) ∈ Y , where X is the space
of audio and Y is the space of text sentences and m and n are input and output lengths. Seq2seq
models are commonly trained by minimizing the negative log likelihood using training data Dtrain of
audio-transcription pairs:

`NLL = −
∑

(X,Y )∈Dtrain

n∑
t=1

logP (yt|X, y1, ..., yt−1) . (1)

During pre-training, in contrast, transcriptions are not available, making this objective inapplicable.
Our key insight is that we can use unsupervised techniques to induce a pseudo language given
raw audio only, and annotate raw audio inputs with it automatically. We then apply the likelihood
sequence-to-sequence objective, and train Wav2Seq, a pre-trained encoder-decoder architecture.
Fig. 1 illustrates the pseudo ASR task.

While our focus is the negative log-likelihood objective, the pseudo language formulation is not
restricted to this objective, and is broadly compatible with other training objectives. For example,
we also experiment with pre-training Wav2Seqs with a sequence transducer architecture using a
transducer loss [20] (Subsubsec. 5.1.1).

3.2 Inducing Pseudo Languages

We construct sequences of discrete tokens from speech. Because Transformer decoders require
quadratic computation with respect to sequence length, we need to balance the length of these
sequences (i.e., wanting them to be short) with the quality of the pre-trained model.

Fig. 2 illustrates how our pseudo subwords are generated. We extract a sequence of hidden feature
vectors from an audio file using a pre-trained HuBERT [26] model. We apply average pooling to
reduce the sequence length and then k-means clustering to discretize these hidden feature vectors.
This results in a sequence of cluster indices, which have also been referred to as hidden units in prior
literature [26].

We treat these cluster indices as characters because they have been found to correlate with the
phonemes of speech audio. We observe many consecutive repetitions of cluster indices, and propose
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to deduplicate them (i.e., remove the duplicates). For example, “k k t t t” will be mapped to “k t”.
We treat the deduplicated cluster indices as the characters of pseudo subwords and refer to them as
pseudo characters.

Clustering Model (e.g. k-means)

Subword Model (e.g. BPE)

Deduplicate

Pre-trained Model (e.g. HuBERT)

Hidden

Feature Vectors

Cluster Indices

View as characters

Avg. Pool (optional)

Pseudo Characters

(Dedup Cluster Indices)

Pseudo Subwords

(BPE tokens)

Audio Input

10 10 19 19 19 19 19 18 147 321 21 21 23

k k t t t t t s oh dv v v x

k t v s h x o d

ktvs xodh

Figure 2: Mapping an audio input into pseudo
subwords. Here we use the first 0.6 seconds of a
real audio from LibriSpeech [41] training set as an
example. We use models with 25 clusters and 1000
BPE tokens in this example. Pseudo subword is a
compact representation (in terms of the sequence
length) of the audio input.

We apply a subword tokenization algorithm
such as byte-pair encoding [BPE; 17] to further
shorten the target sequence length. This pro-
cess merges common co-occurring characters
into newly created tokens, and is widely used in
NLP tasks such as language modeling and ma-
chine translation to balance between the benefits
and costs of character and word representations
(i.e., vocabulary size, unit semantics, handling
of unseen words, etc). For example, a word “ne-
gotiation‘’ can be represented by “ne” “go” “ti”
and “ation” with a subword tokenizer, which
allows the model to share the embedding of the
common suffix “ation” across different words.
Similarly, common pseudo characters sequences
are merged to pseudo subwords.

4 Experimental Setup

4.1 Data
LibriSpeech We use LibriSpeech [41] data for
pre-training and focus on low-resource ASR us-
ing 10h and 100h subsets of labels. LibriSpeech
contains 960 hours of audiobook recordings
for training, two 5-hour development sets (dev-
clean and dev-other) and two 5-hour test sets
(test-clean and test-other). For self-supervised
pre-training, we randomly sample 1% of the
960h training set as the validation set and use
the rest of the raw data (i.e., without labels) as
the training set. For ASR experiments, we use
the LibriSpeech train-clean 100h split and the
10h splits provided by Kahn et al. [30] as the
low-resource labelled data. We use dev-other
for hyper-parameter tuning, ablations, and early
stopping.

LibriLight Similar to the training of wav2vec 2.0 large and HuBERT-large, we use LibriLight [30]
to pre-train large models. LibriLight contains 60K hours of unlabelled audiobook recordings.

CoVoST-2 We use CoVoST-2 speech translation data set [58] for ST experiments. There are 21 X-to-
English and 15 English-to-X language pairs. For X-to-English pairs, we use the 12 low-resource pairs
with less than 10h audios and 4 high-resource pairs with more than 100h audios. All English-to-X
pairs have 430h of English audio. We therefore use the four language pairs used in prior work [60]
and subsample a 10h subset for each pair to simulate a low-resource setup.

SLUE-VoxPopuli We use SLUE-VoxPopuli dataset [53] for spoken NER experiments. SLUE-
VoxPopuli contains several subsets: fine-tune, dev, and test sets with 14.5h, 5h, and 5h of transcribed
audios and their corresponding named entity labels. The audio is from recordings of European
Parliament events and the transcriptions are provided by Wang et al. [59].

4.2 Pre-training

We use the official baselines for most prior work [4, 5, 26], which are implemented in fairseq [40]. Our
Wav2Seq is also implemented as a plugin of fairseq. We use the mini-batch k-means algorithm [52]
with k-mean++ initialization [3] implementation in scikit-learn [43]. Following HuBERT’s best
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hyper-parameters, the number of clusters C is set to 500 by default unless specified separately. We
use the byte-pair encoding (BPE) [17] implementation from Huggingface’s tokenizers library1 as the
subtokenization method where the vocabulary size of subword tokens V is set to 30K (or 10K for the
tiny models).

Following Baevski et al. [5], we pre-trained models with a batch size of at most 87.5 seconds per
GPU on 8 GPUs and an update frequency of 4 to simulate 32-GPU training as Baevski et al. [5]. We
pre-train the models for 100K updates (or 25K updates in second-stage pre-training) unless specified
otherwise. We use the same hyper-parameters as prior work [5, 62]. The peak learning rate is set to
2 × 10−4 with 32K linear warm-up steps and linearly decaying to 0 at step 400K. All models are
pre-trained with eight NVIDIA V100 GPUs with half-precision. We tie the weights of input and
output embeddings of the decoder during pre-training and fine-tuning [29, 46].

4.3 Fine-tuning

We use BPE with vocabulary size 1,000 to tokenize the text in ASR, spoken NER, or ST tasks.
Similar to prior work [5, 26], we use learning rate 5× 10−5 for fine-tuning and use tri-stage learning
rate scheduler with 2,000 steps for linear warm-up and the last 50% of the updates for exponential
decay.2 The number of fine-tuning steps depends on the datasets. When fine-tuned on LibriSpeech
10h (or 100h) data, we use a batch size with at most 50 seconds per GPU of audio for 20K (or 80K)
and updates on eight GPUs with half-precision. For spoken NER and low-resource ST, we use the
same hyper-parameters as the LibriSpeech 10h setup. For high resource ST, we increase the number
of updates to 320K because it has more data. We use beam size 10 for beam search decoding of
Seq2Seq models and no length penalty for ASR and SNER tasks. For ST, we tune length penalty
∈ {0.5, 1.0, 1.5} on the development sets because some languages may be more (or less) compact.
For CTC baselines, we follow the hyperparamters provided by Hsu et al. [26].

5 Experiments

5.1 Automatic Speech Recognition (ASR)

5.1.1 Small Model Experiment

We conduct initial small-scale experiments using tiny models with embedding size 256, four attention
heads, and feed-forward embedding size 1,024 in each Transformer block. Each model has 6 or 12
Transformer blocks. We use a compact wave feature extractor (WFE-C-c128l0) [62] to speed up the
model. This extractor has been shown to perform similar to the wave feature extractor used in wav2vec
2.0 and HuBERT, but faster. All models are pre-trained on LibriSpeech with a semi-supervised
setup using 960h unlabelled recordings for pre-training and 10h labelled data for fine-tuning. To be
comparable, we use the 9th layer of the official second iteration HuBERT-base model to extract both
hidden units and pseudo subwords for pre-training HuBERT baselines and our Wav2Seq models. All
HuBERT models in this subsubsection are third-iteration of HuBERT models.

Table 1 shows word error rate (WER) of HuBERT and Wav2Seq with different fine-tuning setups.
In the first two rows, as is already known, HuBERT performs strongly when fine-tuning with CTC
objective which does not require a Transformer decoder. However, it is challenging to train a HuBERT
encoder with a randomly initialized decoder with only 10h labelled data (rows 4 and 5). In contrast,
our Wav2Seq can easily adapt to an ASR task with only limited supervision (row 6). In row 7, we
show that it is more important to have a deeper encoder (8 layers) and a shallower decoder (4 layers),
which allows closing the gap between CTC fine-tuning and Seq2Seq models. In row 8, we use
Wav2Seq as a second stage pre-training — the encoder of Wav2Seq is initialized with a pre-trained
HuBERT model. As we can see, with only a relatively small amount of additional pre-training cost,
Wav2Seq is able to significantly improve HuBERT’s Seq2Seq performance. This demonstrates that
HuBERT and Wav2Seq pre-training are complimentary.

Transducer Models We conduct similar experiments on a Transducer [20] model architecture and
show that Wav2Seq pre-training is not restricted to Seq2Seq models (rows 11 and 12). Because

1https://github.com/huggingface/tokenizers
2We tune the learning rate ∈ {2× 10−4, 10−4, 5× 10−5, 2× 10−5} on the small models on ASR and fix

them.
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ASR Type # Pre-training Method Pre-train Layers dev-other
Iterations Enc Dec WER (%)

CTC 1 HuBERT 100K 6 0 51.7
2 HuBERT 100K 12 0 36.5

Seq2Seq

3 No pre-training 0 6 6 ≥100.0
4 HuBERT 100K 6 6 ≥100.0
5 HuBERT 100K 12 6 85.8
6 Wav2Seq 100K 6 6 38.1
7 Wav2Seq 100K 8 4 36.6
8 Wav2Seq (from HuBERT) 100K + 25K 6 6 34.7

Transducer

9 No pre-training 0 6 3 93.5
10 HuBERT 100K 6 3 93.6
11 Wav2Seq 100K 6 3 44.2
12 Wav2Seq (from HuBERT) 100K + 25K 6 3 40.8

Table 1: Small model ASR experiment with unsupervised pretraining on LibriSpeech 960h and
fine-tuning with LibriSpeech 10h ASR labels. All models have embedding size 256, FFN size 1,024,
and four attention heads in their Transformer layers. We show that Wav2Seq works with both Seq2Seq
and Transducer architectures. Moreover, Wav2Seq is complementary to HuBERT pre-training —
when initializing the encoder with HuBERT and having a second stage pre-training with Wav2Seq,
we observe the best results.

Labels Model PT Iter. ASR Iter. dev-c dev-o test-c test-o

10h S2T 0 15K ≥100 ≥100 ≥100 ≥100
10h Wav2Seq-S2T 300K 5K 45.0 54.5 48.0 55.1

100h S2T 0 150K 16.4 31.6 16.9 32.8
100h Wav2Seq-S2T 300K 50K 12.6 25.8 12.8 26.8

Table 2: LibriSpeech WER (%) using fairseq S2T Transformer-small model [57]. 10h or 100h of
labelled transcripts are provided. With 10h labelled data, the model cannot learn effectively without
Wav2Seq pre-training. With 100h labelled data, pre-training the S2T model using Wav2Seq on 960h
unlabelled audio results in the same model architecture achieving better performance with only 1/3 of
the training time.

Transducers require O(mnV ) space complexity (m, n, and V are input sequence length, output
sequence length, and output vocabulary size), we set C = 25 and V = 1000 to fit the model into a
single GPU memory, which may hurt its performance compared to the Seq2Seq counterparts. We
study the impact of C and V in Subsec. A.1. We also reduce the number of decoder (a.k.a., label
encoder in a transducer) layers because of memory issues. The pre-training learning rate is set to
5× 10−4 for Transducers.

Speech-to-text Transformer Models We show that Wav2Seq generalizes to other model architec-
tures using the S2T Transformer model implemented by Wang et al. [57], which is a transformer-based
Seq2Seq ASR model [39] that takes log-mel filterbank features as inputs and is widely used as a
baseline under the fully supervised setup. In this experiment, we closely follow the default hyperpa-
rameters in the codebase,3 except that we reduce the number of training iterations (300K originally)
because the official example uses the complete 960h labelled data, while we use a semi-supervised
setup with only 10h or 100h labelled data. Table 2 shows the WERs of an S2T Transformer-small
trained from scratch and a Wav2Seq pre-trained counterpart. With merely 10h labelled data, it is
impossible to train the S2T Transformer from scratch (row 1). In contrast, with Wav2Seq pre-training,
the model can learn meaningful patterns from limited labels (row 2). With 100h labelled data, a
model Wav2Seq pre-trained with 960h unlabelled data can significantly improve the WER of the
model (32.8% to 26.8% on LibriSpeech test-other) while requiring merely one third of the fine-tuning
time on the 100h ASR data (rows 3 and 4).

5.1.2 Standard Model Size Model Experiments

We use the official HuBERT-base and HuBERT-large pre-trained on LibriSpeech and LibriLight
as the initialization of Wav2Seq encoders following our observation that Wav2Seq works best as
second stage pre-training. We further pre-train the models on the same corpus with relatively few

3https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/
librispeech_example.md
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ASR Type Pretraining method PT Iter. dev-o test-o

10h labelled data:
CTC W2V2-base 400K 17.4 17.6
CTC HuBERT-base 400K 16.9 17.2

Seq2Seq HuBERT-base 400K 27.2 28.2
Seq2Seq Wav2Seq (from HuBERT-base) 400K + 25K 15.0 15.7
Seq2Seq Wav2Seq (from HuBERT-base) 400K + 100K 14.7 15.3

10h labelled data + large model:
CTC W2V2-large 400K 9.8 10.0
CTC HuBERT-large 400K 9.9 10.2

Seq2Seq HuBERT-large 400K 17.4 18.7
Seq2Seq Wav2Seq (from HuBERT-large) 400K + 25K 9.5 9.8

100h labelled data:
CTC HuBERT-base 400K 13.6 12.9

Seq2Seq Wav2Seq (from HuBERT-base) 400K + 100K 11.0 11.2

Table 3: Librispeech dev-other WER with different amount of labelled data. Wav2Seq as a second
stage pre-training method significantly improves the Seq2Seq model performance and allows it to
match or even outperform CTC fine-tuning. No language models are used.

Model Type PT method dev test

Pipeline W2V2-large + DeBERTa-large 63.3 57.8
Pipeline W2V2-large + LM + DeBERTa-large 74.9 69.6

E2E CTC W2V2-large 55.6 50.9
E2E CTC W2V2-large + LM 70.2 64.8

E2E Seq2Seq HuBERT-large 64.0 58.5
E2E Seq2Seq Wav2Seq (from HuBERT-large) 71.7 65.4

SoTA using external data:
E2E CTC W2V2-base + Distill-NLP (500h ASR data) 82.2 N/A

Table 4: Development and test F1 scores (%) on SLUE-VoxPopuli NER [53]. Wav2Seq achieves
the best performance among all end-to-end methods without access to a language model. A pipeline
model using an NLP pre-trained model (DeBERTa-large) remains the best among all the approaches.
The numbers in the first four rows are provided by Shon et al. [53]. The last row is the state-of-the-art
using external data and knowledge distillation from an NLP model, the test score is not available in
their currently published paper [42].

updates (25K or 100K iterations compared to 400K interactions for HuBERT models). For the
decoder, we use six Transformer blocks with the same width and number of heads as the encoder.
Our Wav2Seq (from HuBERT-base) and Wav2Seq (from HuBERT-large) models take 14 and 49
hours to be fine-tuned for 25K updates on eight NVIDIA V100 GPUs, a relatively small compute
budget (less than 10%) compared to training HuBERT models (usually 400K updates).

Table 3 shows WER for standard sized models. Even with a well trained HuBERT-base, fine-tuning
with the Seq2Seq architecture using a randomly initialized decoder is inferior to the simple CTC
objective (rows 2 and 3). Using Wav2Seq closes the gap or even makes Seq2Seq models outperform
CTC counterparts (row 4). However, we observe that pre-training longer does not help for Wav2Seq
(from HuBERT-base) (row 5). The reason might be that the encoder has already been pre-trained.
This shows that the second-stage pre-training can be stopped early without hurting performance. We
also compare models with 100h labelled data to confirm our observation.

5.2 Spoken Named Entity Recognition (SNER)

Spoken named entity recognition has recentely received significant attention [18, 53, 65]. It is often
addressed in one of two ways: end-to-end (E2E) or pipeline (i.e., a combination of an ASR model
and an NLP NER model). Shon et al. [53] show that the pipeline approach is the state-of-the art,
while more recent work [42] shows that with additional external data the order can be reverted.

End-to-end models are usually trained with a CTC objective [18, 53, 65]. In our experiment, we
explore the potential of applying Seq2Seq to SNER. Following Shon et al. [53], we add special tokens
around named entities in the transcription and train the model in an ASR manner, which results in a
model that detects named entities as it transcribes the audio inputs.
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Param (M) Tr Ar Et Mn Nl Sv-SE Lv Sl Ta Ja Id Cy Avg.
Model Enc Dec 4h 2h 3h 3h 7h 2h 2h 2h 2h 2h 2h 2h -

HuBERT-large 315 102 3.4 5.0 0.6 0.4 3.6 4.4 2.8 2.6 0.4 1.7 2.3 3.2 2.5
Wav2Seq (from HuBERT-large) 315 102 3.7 5.1 0.7 0.2 6.5 4.9 3.6 3.9 0.0 0.9 3.5 3.3 3.0
XLS-R (0.3B) 315 102 3.7 8.1 0.6 0.3 3.5 5.3 3.1 5.3 0.0 2.0 3.3 3.4 3.2
Wav2Seq (from XLS-R (0.3B)) 315 102 4.5 10.5 2.4 0.3 12.2 8.8 4.8 5.9 0.0 1.9 5.0 5.7 5.2

Use an mBART decoder (pretrained on multilingual machine translation data):
XLS-R (0.3B) + mBART-ML50N1 315 459 4.6 3.0 3.5 0.4 22.0 10.3 6.0 6.6 0.2 0.6 1.4 2.5 5.1
XLSR-53 + mBART-ML50N1 315 459 3.7 1.2 0.7 0.6 20.5 2.8 1.9 0.5 0.1 0.4 0.6 5.6 3.2
VP-100K + mBART-ML50N1 315 459 0.9 0.8 4.6 0.3 18.3 11.7 9.0 8.1 0.1 0.2 0.7 0.6 4.6
XMEF-En + mBART-ML50N1 315 459 4.8 2.8 1.5 0.9 14.2 5.0 4.9 5.0 0.8 1.7 3.7 2.3 4.0
XMEF-X + mBART-ML50N1 315 459 9.4 6.4 2.5 1.2 24.0 4.0 5.0 5.6 0.9 1.0 2.8 8.1 5.9

SoTA: Use a larger encoder + an mBART decoder (pretrained on multilingual machine translation data):
XLS-R (2B) + mBART-ML50N1 2162 459 16.7 17.1 11.1 1.6 31.7 29.6 19.5 19.6 0.5 3.5 16.5 14.0 15.1

Table 5: Test BLEU scores on CoVoST 2 low-resource X-to-En language pairs. When limited labels
are provided, using Wav2Seq as a second stage pre-training consistently improves the performance of
HuBERT-large and XLS-R (0.3B). Wav2Seq (from XLS-R (0.3B)) is on par with the XLS-R (0.3B) +
mBART-ML50N1 which uses a large mBART decoder pre-trained on a 50-language text corpus and
fine-tuned on 50 languages to English machine translation corpus with 4× parameters. The scores in
the second and third groups are from Babu et al. [4]. VP-100K is a wav2vec 2.0 large pre-trained
on VoxPopuli 100K hour multilingual data [59], XLSR-53 [15] is a wav2vec 2.0 pre-trained on
53-language audios, and XMEF-En and XMEF-X are efficient fine-tuning method proposed by Li
et al. [35].

Table 4 shows F1 scores on SLUE-VoxPopuli dev and test sets. While pipeline models remains the
best without external data, Seq2Seq models significantly outperform the CTC baseline4 without a
language model (LM). Wav2Seq (from HuBERT-large) further improves performance (from 58.5%
to 65.4% test F1), and obtains the best F1 score among all E2E models without external data,
outperforming the best CTC model with an LM. Using external data [42] remains the state-of-the-art.
We leave the study of leveraging external data for Seq2Seqs model for future work.

Fr De Es Ca Avg.

Wav2Seq (from HuBERT-large) 33.2 26.9 34.0 29.7 31.0
Wav2Seq (from XLS-R (0.3B)) 33.0 28.0 33.8 29.9 31.1

Use an mBART decoder (pretrained on multilingual machine translation data):
XLS-R (0.3B) + mBART-ML50N1 32.9 26.7 34.1 28.7 30.6
XLSR-53 + mBART-ML50N1 32.3 26.9 33.3 28.6 30.3
VP-100K + mBART-ML50N1 30.4 23.4 31.1 25.7 27.7
XMEF-En + mBART-ML50N1 35.0 28.2 35.2 31.1 32.4
XMEF-X + mBART-ML50N1 36.1 30.6 38.1 31.8 34.2

SoTA: Use a large encoder and an mBART decoder:
XLS-R (2B) + mBART-ML50N1 37.6 33.6 39.2 33.8 36.1

Table 6: Test BLEU scores on CoVoST-2 X-to-En high-resource language pairs. We compare with
the same baselines as Table 5.

5.3 Speech-to-text Translation (ST)

Encoder-decoder (i.e., Seq2Seq) models are considered particularly suitable for speech-to-text
translation tasks, where the input and output sequences are not monotonically aligned.

Our experiments extend beyond English. Besides the English Wav2Seq (from HuBERT-large), we
also pre-train a Wav2Seq (from XLS-R (0.3B)) which uses a multi-lingual XLS-R encoder [4]
pre-trained on 500K hours of audio in 128 languages. We use LibriLight for second stage pre-training
and pre-train the model for only 25K updates.5

4Shon et al. [53] show that W2V2-base is slightly better (50.2% vs. 49.8% test F1) than HuBERT-base and
only report the scores of W2V2-large, so we choose it as the CTC baseline.

525K updates is about 0.3 epoch of LibriLight, so the model only sees about 20K hour audio during
second-stage pre-training.
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Model De Ca Ar Tr Avg.

HuBERT-large 5.0 7.9 1.6 1.5 4.0
Wav2Seq (from HuBERT-large) 9.7 13.0 3.1 2.9 7.2

Table 7: Test BLEU scores on CoVoST-2 En-to-X language pairs under a low-resource fine-tuning
setup where only 10h labelled audio is provided.

De Ca Ar Tr Avg.

W2V2-large [60] 23.8 34.0 18.0 15.4 22.8
Wav2Seq (from HuBERT-large) 27.2 32.7 19.7 18.0 24.4

Use an mBART decoder (pretrained on multilingual machine translation data)
XLS-R (0.3B) + mBART-ML501N 23.6 28.7 16.3 15.0 20.9
XLSR-53 + mBART-ML50N1 23.6 29 16.5 15.3 21.1
VP-100K + mBART-ML50N1 20.8 26.1 14.5 13.5 18.7
XMEF-JT + mBART-ML50N1 25.8 30.9 18.0 17.0 22.9

Use a large encoder and an mBART decoder:
W2V2 (0.72B) + mBART-ML501N 27.0 32.7 19.4 17.7 24.2
XLS-R (1B) + mBART-ML501N 26.1 32.1 19.2 17.1 23.6
XLS-R (2B) + mBART-ML501N 28.3 34.2 20.7 18.6 25.5

SoTA: Use self-training (labeling 60K hour of audio) + LM:
W2V2-large + Self-training (labeling 60Kh data) 26.5 34.1 20.2 17.5 24.6

+ Decoding with LM 27.2 35.6 20.8 18.9 25.6

Table 8: Test BLEU scores on CoVoST-2 En-to-X language pairs. The complete 430h labelled
audio data is used. Our Wav2Seq (from HuBERT-large) outperforms XLS-R (1B) [4] without using
any multi-lingual data or using an mBART [37] decoder pretrained on text data. It also reaches a
similar performance by self-training [60] which is computationally expensive since it has to label 60K
hours of audios and fine-tuning on them in a second iteration. We also compare with VP-100K [59],
XLSR-53 [15], and XMEF-JT [35].

X-to-English Low-resource Experiments We experiment with 12 X-to-English language pairs
where less than 10 hours of labelled data is available. We fine-tune both baselines and our models
in a multi-task fine-tuning learning setup. Table 5 shows test BLEU scores on each language pair.
Wav2Seq improves HuBERT and XLS-R (0.3B) models on most language pairs and achieves better
average performance. Notably, our Wav2Seq (from XLS-R (0.3B) can match the performance of
XLS-R (0.3B) with an mBART-ML50N1 decoder which has 4× the number of parameters in the
decoder, which is pre-trained on 50 language unlabelled texts and then fine-tuned on a 50-language-
to-English machine translation corpus. Using Wav2Seq as a second-stage pre-training method makes
the decoder size flexible and requires no additional text data.

X-to-English High-resource Experiments Table 6 shows the test BLEU scores of the four high-
resource X-to-English language pairs. Our Wav2Seq (from XLS-R (0.3B)) outperforms the counter-
part using an mBART-ML50N1 decoder (row 1 vs. 3). Since the input audio is always in English,
we do not observe performance gain with a multi-lingual pre-trained encoder (row 1 vs. 2). XMEF
models [35] and XLS-R (2B) [4] achieve better BLEU scores with a mBART-ML50N1 decoder and
more parameters.

English-to-X Low-resource Experiments Since English is a high resource language, all English-
to-X language pairs in CoVoST-2 have 430 hours of labelled audios. We subsample a 10 hour subset
for de-en, ca-en, ar-en, tr-en language pairs. We choose these four language pairs because they
are studied more often in prior works [4, 60]. Table 7 shows the test BLEU scores of the models
fine-tuned on each 10h training set. Wav2Seq (from HuBERT-large) outperforms HuBERT-large
baseline.

English-to-X High-resource Experiments Table 8 shows the test BLEU scores on four English-to-
X pairs with the full 430h labelled data used for fine-tuning. Our Wav2Seq (from HuBERT-large)
model outperforms most of the models with the same size encoder and match the performance
of the models with 2× or 3× encoder size (W2V2 (0.72B) and XLS-R (1B)). It also matches the
performance of a wav2vec 2.0 large using 60K hours of audios for self-training.

Table 9 shows the performance gain of Wav2Seq with different amounts of labelled data. A pre-trained
decoder has higher impact on low resource setup, but the gain diminishes with more supervision.
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Model 10h 100h 430h

HuBERT-large 5.0 20.0 26.5
Wav2Seq (from HuBERT-large) 9.7 21.9 27.2

Improvement 4.7 1.9 0.7

Table 9: Test BLUE scores on CoVoST-2 En-to-De with different amounts of labelled data. The gain
from self-supervised pre-trained decoder decreases as the amount of the labelled data increases.

Method Target Tokens Length Compression WER (%)

Wav2Seq Psuedo Subwords 17.4 % 38.1
- BPE tokenization Pseudo Characters 39.2 % 44.1

- Deduplication Hidden Units 100.0 % 96.5

English Words 5.2 %
English Subwords 8.4 %
English Characters 27.6 %

Table 10: WER (%) on LibriSpeech dev-other set for pseudo ASR tasks with different target
sequences. The length compression rate is the ratio between the decoder sequence length and the
encoder sequence length (100% means no compression) computed on dev-other. We also show the
compression rate of English tokens. The compression rate of pseudo subwords lies between English
subwords and English tokens.

5.4 Ablation Study

We conduct ablation study using the small scale model in Subsubsec. 5.1.1 to understand the gain of
each component in the generation of pseudo subwords. Table 10 shows the results of pre-training
with different type of target sequences. Deduplication plays a vital role and using BPE tokenization
to convert characters into subwords further reduces WER. We hypothesize that the duration of these
characters is less relevant to the semantic of speech and it is more important to capture the transition
of different characters. We provide further ablation studies in Subsec. A.1.

6 Conclusion and Future Work

We present Wav2Seq, a self-supervised learning framework for pre-training speech processing models.
Unlike existing methods, Wav2Seq pre-trains both encoder and decoder parameters, thereby allowing
the two main components of common encoder-decoder architectures to benefit from pre-training.
Critically, Wav2Seq requires raw audio data only. Instead of using aligned text, we create a pseudo
ASR task in which models transcribe audio inputs into pseudo subword tokens. We show that
Wav2Seq closes the performance gap between encoder-decoder models and CTC models under
low-resource conditions in ASR. On the SLUE-VoxPopuli spoken NER task, Wav2Seq achieves the
best performance among all E2E models. On speech-to-text translation tasks, Wav2Seq consistently
improves the performance of HuBERT and XLS-R and rivals mBART decoder initialization, which
requires additional language data, while being more flexible and having fewer parameters.

We demonstrate the potential of encoder-decoder models, which are applicable to more diverse tasks
than CTC models. Understanding the impact of additional data (e.g., via knowledge distillation
or self-training) or combining with external models (e.g., LMs trained on large text corpora) is an
important direction for future studies. Another interesting direction is to apply pseudo subwords
to generative spoken language models [32]. Last but not least, it is possible to add CTC loss to
the encoder during fine-tuning and do joint CTC/attention decoding [25] to further improve the
performance of Wav2Seq.

Limitations We study ASR models that do not use language models (LMs). As seen in prior
work [5, 26], an external language model can boost the performance of CTC models. Due to the
architecture difference between CTC and Seq2Seq, different LMs have to be used with CTC and
Seq2Seq models which further complicates the experimental setup. The order of the performance
may be swapped when different LMs are applied. Moreover, because CTC models are faster during
inference, CTC models remain a valid choice for ASR if the performance difference is small.
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A Additional Experiments

A.1 More Ablation Study

Table 11 shows the ablation study on the number of clusters and vocabulary size. As we can see,
number of clusters has a large impact on the compression rate of the target sequence length. Number
of clusters has a larger impact on the length compression rate and the WER after fine-tuned on
LibriSpeech. A moderate compression is preferable; too much or too less can hurt the performance.
Finally, Table 12 shows the performance of using the optional average pooling. As we can see, having
kernel size 2 is beneficial. The main goal for applying average pooling is to reduce prepossessing and
pre-training cost: we store fewer HuBERT features and reduce the time spent on k-means and BPE
tokenization for free.

Number of clusters (C) BPE vocab size (V) Length Compression WER (%)

25 1000 10.8 % 41.7
25 3000 9.2 % 42.5
25 10000 8.0 % 42.3

100 3000 14.5 % 39.1
100 10000 12.3 % 38.8
100 30000 10.8 % 38.9

500 3000 21.5 % 41.5
500 10000 17.4 % 38.1
500 30000 14.8 % 40.3

Table 11: Ablation study on number of clusters C and BPE vocabulary size V . We fix average
pooling size K = 2. We use small-scale model and report WER on LibriSpeech dev-other.

Ave. Pool size (K) Length Compression WER (%)

1 18.5 % 41.1
2 14.8 % 40.3
4 10.7 % 41.3

Table 12: Ablation study on average pooling kernel size K. We use C = 500, V = 30000 in this
experiment.
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