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ABSTRACT

We propose a new power amplifier (PA) behavioral modeling

approach, to characterize and compensate for the signal qual-

ity degrading effects induced by a PA with a machine learning

(ML) aided piece-wise (PW) modeling approach. Instead of

using a single pruned Volterra model, we use multiple small-

size pruned Volterra models by classifying the input data into

different classes. For that purpose, an ML classifier model

is trained by extracting some crucial features from both the

input signal statistics and the PA operating point. The simu-

lation results indicate that our approach contributes to an im-

proved performance/complexity trade-off than a single gen-

eralized memory polynomial (GMP) model in terms of PA

behavior modeling and linearization.

Index Terms— Behavioral modeling, computational

complexity, decision tree, digital predistortion (DPD), lin-

earization, machine learning (ML), power amplifier (PA).

1. INTRODUCTION

As per green communications obligation, a power amplifier

(PA) must be operated as close as possible to its saturation

point [1]. However, that leads to wanted effects arising from

PA non-linear (NL) behavior such as gain compression, in-

band (IB), and out-of-band (OOB) distortions [2].

Digital predistortion (DPD) is a popular PA linearization

technique requiring PA behavior modeling [3]. PA is also a

NL dynamic system. The Volterra series is computationally

expensive but can capture the behavior of PA and memory. It

has been theoretically proved that the k-th order pre-inverse

of a Volterra system is identical to its post-inverse [4]. This

paved way for the usage of pruned Volterra models with re-

duced complexity to retain most of the modeling capabili-

ties, such as memory polynomial (MP) [5], generalized MP

(GMP) [6] and dynamic deviation reduction (DDR) [7] and

etc.

ML techniques for DPD have already gained traction [8–

11]. However, it is difficult to model the PA behavior with
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a single model for the entire range of output power because

of varying behavior at different power levels. Thus, piece-

wise (PW) polynomial-based models have been shown to be

quite effective in modeling and linearizing PAs with strong

nonlinear effects [12–15]. In [12], a vector switched model

has been proposed where the input data samples are classi-

fied by a computationally expensive k-means clustering algo-

rithm based on their envelope. Nevertheless, the basic intent

of PW modeling and results shown in [12] are interesting as

they paved the way with better hardware-friendly techniques

such as [13] and [14]. In [13], a low-computation learning

algorithm based on a simple decorrelation rule is used for

PW modeling. In [14], authors proposed a PW closed-loop

DPD solution using low-complexity gradient-adaptive param-

eter learning algorithms. Recently, a machine learning (ML)-

based scheme was proposed in [15] where the input samples

are classified by the decision tree classifier using features like

current magnitude and past samples. The sub-model coeffi-

cients are then extracted.

Our proposed approach involves two stages: ML clas-

sification of the input and output baseband signal samples

and piecewise digital predistortion (DPD). The novelty of this

scheme is to model an accurate and low-complex machine

learning (ML)-aided classifier in the first stage involving the

input and output baseband signal samples. Here, the bound-

aries between the classes are calculated as a function of both

the input data statistics and PA operating point. In the second

stage, the class-wise samples are linearized by tailored GMP

models. Supervised ML approaches such as k-nearest neigh-

bors (kNN) and decision trees are non-parametric and do not

have an assumption on the distribution of the data. There-

fore, the key aspect lies in extracting some essential features

from the statistics of the input data samples and also the PA

operating point. The simulation results validate this perspec-

tive leading to an improved performance/complexity trade-off

than a single GMP model in terms of PA behavior model-

ing and linearization. Albeit, further improvements can be

achieved by determining the minimum required number of

classes and properly identifying their boundaries.

Rest of the paper is organized as follows. Section 2



Fig. 1. Wiener-Hammerstein Model of the PA with memory.

presents the simulated PA model and relevant metrics. The

proposed scheme is explained in Section 3. The simulation

results are given in Section 4 and then the paper is concluded.

2. PA MODEL AND PERFORMANCE METRICS

2.1. PA Model

Let us denote the orthogonal frequency-division multiplexing

(OFDM) modulated discrete-time input and output data vec-

tors for PA as x = [x0, . . . , xN−1] and y = [y0, . . . , yN−1],
where N is the fast Fourier transform (FFT) size. Then,

x can be mathematically modeled as a function of x as

y = Fa

(

|x|
)

.ej(Fp

(

|x|
)

+φx), where, Fa and Fp are the clas-

sical amplitude-to-amplitude (AM/AM) and amplitude-to-

phase (AM/PM) conversion characteristics respectively and

φx = [φ0, . . . , φN−1] is the phase vector of x. A Wiener-

Hammerstein structure [16] is used to model the behavior of a

memory PA as illustrated in Fig. 1. A modified Rapp model is

used as the NL static system [17]. It is preceded by a high pass

filter (HPF) and succeeded by a low pass filter (LPF). The

designed LPF is an invertible 3-tap finite impulse response

filter with the coefficients [0.7692, 0.1538, 0.0769] [18]. The

HPF is designed as an inverse of the LPF.

Let k ∈ N be the time index of an input sample xk where

N = {0, 1, . . . , N−1} is the set of indices of all time samples

in x. Then, the mathematical expression of the modified Rapp

model’s conversion characteristic is

yk =
gs|xk|
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vsat

)2p
)
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j

(

α|xk|q1

1+

(

|xk|
β

)q2
+φk

)

(1)

where gs is the small signal gain of PA, p is the knee factor,

vsat is the input saturation voltage of PA and α, β, q1, q2 are

the parameters related to AM/PM characteristic. The input

back-off (IBO) of a PA, often expressed in dB, is defined as

IBO = 10 log10
Nv2

sat

||x||2
2

, where ||.||2 is the Euclidean norm.

Likewise, output back-off (OBO) can be defined as the ratio

between the mean power of the saturation point of the PA

output to the mean power of the output signal.

2.2. Performance and Complexity Metrics

Two metrics are widely used to characterize the quality of

the transmitted signal in IB and OOB. These two are er-

ror vector magnitude (EVM) and adjacent channel leak-

age ratio (ACLR) [19]. The ACLR is defined in dB as
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Fig. 2. Block diagram of the proposed scheme.

ACLR = 10 log10(Pchannel/Padj), where Pchannel de-

notes the total power within the assigned channel and Padj

is the maximum power of the two adjacent channels. The

EVM is measured for the post-amplified signal by using

a measurement receiver and is defined both in % and dB

as EVM% = ||Y − X||2/||X||2 × 100 and EVMdB =
20 log10(||Y − X||2/||X||2) and, where X and Y are the cor-

responding complex samples in the frequency domain after

the equalization and demodulation of y and x respectively.

Computational complexity reduction ratio (CCRR) is

used for estimating the proposed scheme’s complexity reduc-

tion performance over the conventional one. CCRR is defined

in % as CCRR =
(

1 − Cnew

Cref

)

× 100, where Cnew and Cref

are computational complexities of the proposed scheme and

the conventional scheme that are used for comparison. We

use F1 score as the ML classifier performance metric [20].

3. THE ML-AIDED PW-DPD SCHEME

Our proposed scheme, termed as ML-aided PW-DPD, has two

stages and follows the direct learning architecture (DLA). It is

presented as a block diagram in Fig. 2. Stage I involves ML-

based classification of the input data samples into different

sample classes using intuitive and easily interpretable super-

vised learning algorithms like kNN and decision-tree. The

selected classifiers are generic and flexible as they are non-

parametric and do not assume any inherent distribution of in-

put samples [20]. Under Stage II, we perform behavior mod-

eling using class-wise tailored GMP models followed by DPD

for each of the samples. At the end of Stage II, all the class-

wise samples are realigned w.r.t. their original time sample

indices to construct the predistorted signal z. The mathemat-

ical model of GMP is given in [6] and not presented in this

paper for the sake of brevity. We denote the GMP model

with NL polynomial degree P and memory depth of K for

the leading and lagging memories as GMP (P,K) [21].

3.1. Stage I: ML-aided classification

Initially, we scale x with the IBO coefficient to make Stage I

dependent on the PA operating point. In Stage I, the first step

is to build essential features for the ML-based classifier of the



input data samples. Each input data sample xk in the base-

band may be modeled as a complex Gaussian random vari-

able with Rayleigh envelope distribution if N is sufficiently

large [22]. The histogram of |x| is fitted to a Rayleigh distri-

bution for extracting the estimated statistical parameters such

as mean µ̂ and standard deviation σ̂ based on the maximum

likelihood estimation. Now, we need to build some impor-

tant features for the ML classifier training. Therefore, we ex-

tract the four essential features from the statistical properties

of the input sample xk. Those are square of deviation of the

sample’s amplitude from mean (i.e. (|xk| − µ̂)2), samples’s

energy (i.e. |xk|
2), real and imaginary parts of the sample

(i.e. Re |xk| and Im |xk|). We extract the fifth feature from

the PA operating point which is the deviation of the sample’s

amplitude from saturation voltage (i.e. |xk| − vsat). These

features can be constructed with meager computational com-

plexity.

The ML classifier is trained with these five features and

each input sample xk is classified into one of the B classes.

∀i ∈ B, let κ(i) ∈ N be the set of indices of the samples that

are classified as belonging to the ith class. Then, ∀{i, j} ∈ B,

we have any two sets κ(i) and κ(j) being mutually disjoint,

i.e. we have ∪iκ(i) = N and ∩iκ(i) = ∅. Each output sample

yk will be automatically classified to be the ith class if k ∈
κ(i). In other words, the input and output samples with the

same time sample index will belong to the same class but ML

classification takes into account only the input sample.

3.2. Stage II: PW behaviour modelling and compensation

We denote classified input and output samples belonging to

the ith class as x(i) and y(i) respectively. These outputs of

Stage I are fed as inputs to the ith Regressor block, Regressori
in Stage II for the extraction of DPD coefficients for that class

which we denote as c(i). All the B Regressor blocks use a tai-

lored GMP model to capture the PA behavior over the samples

belonging to the respective classes and may be implemented

in a parallel fashion. The proposed scheme also allows for any

classical pruned Volterra model or any ML-based model to be

used as the regressor in Stage II. In the ith parallel chain, the

extracted class-wise DPD coefficients from Regressori are fed

into the DPDi block to generate the class-wise predistorted

samples z(i).
Finally, all the class-wise predistorted samples are re-

aligned into a discrete-time series as per their sample index

positions for the construction of the predistorted signal z

which is then sent to the PA. From the DLA perspective,

we identify the PW ideal post-distorter for each class by an

improved PA behavior modeling and copying it as the PW

predistorter. Our scheme involves only one iteration.

4. SIMULATION RESULTS

We consider 64 quadrature amplitude modulated OFDM sym-

bols M = 105 and FFT size N = 1024 with all active sub-

carriers and an oversampling factor L = 4. The complemen-

Table 1. Classwise F1-scores over the test dataset for differ-

ent ML classifier models.
kNN F1 score DT F1 score

2 features 4 features 5 features 2 features 4 features 5 features

Class 1 0.05 0.76 0.95 0.05 0.95 1

Class 2 0.31 0.98 0.99 0.31 0.99 1

Class 3 0.42 0.99 0.99 0.41 1 1

Class 4 0.56 0.97 0.98 0.53 1 1

Class 5 0.02 0.91 0.95 0.05 0.98 0.98

tary cumulative distribution function of the sample level peak-

to-average power ratio of the composite digital waveform, af-

ter selected mapping [23], read 8.8 dB and 9 dB when mea-

sured at 1% and 0.01% points, respectively. The PA gain is

normalized in our analysis (i.e. gs = 1) and vsat is 1V. The

modified Rapp model parameters are knee factor p = 2.25,

α = −270, β = 0.17, q1 = 1.1 and q2 = 1.1. The num-

ber of classes in the ML classifier B was chosen to be 5.

We have used GMP (6, 3) for the single GMP model and for

the proposed scheme’s five classes they were chosen by trial

and error method to be GMP (4, 3), GMP (3, 3), GMP (5, 3),
GMP (3, 3) and GMP (2, 1) respectively.

Our motivation and focus were on the hardware-friendly

DPD schemes. It became evident that further improvements

can be achieved by determining the minimum required num-

ber of the class and properly identifying their boundaries. So,

we are of the opinion that it is not fair to compare with the

state-of-the-art schemes mentioned in the introduction unless

the proposed scheme is fully optimized. Therefore, in this

work we do the performance and complexity analysis only

with the conventional single GMP model and similar analy-

sis with the aforementioned state-of-the-art schemes shall be

included in our future work.

4.1. Performance of ML-based Classification Model

In this subsection, we analyze the performance of ML-based

classification using kNN and decision-tree algorithms. The

total number of input OFDM signal samples will be MLN .

We initially consider a dataset with 8.192 × 106 (i.e. just

2% of the total samples) samples and 5 class labels. In the

next step, the aforementioned essential feature information is

collected over each sample and used for training/testing the

classification algorithms. We note that only 10% of the en-

tire dataset is used for training both kNN and decision-tree

algorithms. For the kNN classifier, we chose k = 10 and

Euclidean distance metric as hyper-parameters.

Table 1 shows the F1 score performances of kNN and

decision-tree classifiers over the test dataset for all 5 classes,

respectively. We notice that classifier models with less than

5 features have shown sub-optimal performance. For both

the training algorithms, we observe that if provided with

important features then 10% of signal samples is enough to

accurately predict the classes for the remaining 90% of the

dataset. This shows that, statistical feature selection favors

less algorithmic complexity (training with 0.2% of MLN
samples) with reliable classification accuracies. Moreover,
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Fig. 3. EVM performance at different IBO values.1

Fig. 4. AM/AM conversion characteristic at 6 dB IBO1

the decision-tree classifier is observed to show the best per-

formance between both ML classifiers with an average F1
score over 5 classes ≈ 1.

4.2. Performance and complexity analysis

We analyse the relative EVM improvement (with arrow text)

in IB and the relative ACLR gains in OOB for different IBO

(and OBO) values as shown in Fig. 3 and Table. 2, respec-

tively.1 We observe that the proposed scheme outperforms the

conventional approach in IB and also for lower IBO values in

OOB. The AM/AM and AM/PM plots have been shown at

6 dB IBO in Figures 4 and 5.1 The extent of each class along

with its boundaries is shown where we can see the relative

outperformance of the proposed scheme.

1In the legends of all the plotted figures, ‘NL’ (in black), ‘Single GMP

model’ (in red) and ‘The proposed scheme’ (in green) indicate conversion

characteristic of the original NL PA output (i.e. no DPD), the linearized PA

output by the single GMP model and the proposed PW approach, respec-

tively.

Fig. 5. AM/PM conversion characteristic at 6 dB IBO.1

Table 2. ACLR Performance in dB at different IBO values.
IBO OBO Single GMP model The proposed scheme ACLR gain

3 1.52 22.80 24.39 1.59

4 2.18 27.69 30.61 2.92

5 2.91 33.39 34.05 0.66

6 3.69 36.71 36.29 -0.42

7 4.54 38.20 37.89 -0.31

8 5.42 38.75 38.75 0.0

9 6.34 38.79 38.79 0.0

At 6 dB IBO, the single GMP model with GMP(6, 3) re-

quires 48 coefficients and the proposed scheme requires 113

coefficients. For computational complexity analysis, we try

to compare the number of complex multiplications and addi-

tions. The number of complex multiplications and additions

in a single GMP fitting model is 2MLNΛ and 2MLN(Λ−1)
respectively, where Λ is the number of DPD coefficients. ∀i ∈
B, the proposed scheme require

∑

i

(

2Λicard(κi)
)

complex

multiplications and
∑

i

(

2(Λi − 1)card(κi)
)

complex addi-

tions, where Λi is the number of DPD coefficients for the ith

class and
∑

i card(κi) = MLN . Compared to the tradi-

tional scheme, using CCRR we have estimated 42.44% and

41.56% reduction in complex multiplications and additions

for the proposed scheme at 6 dB IBO.

5. CONCLUSION

An ML-aided PW DPD scheme has been proposed by clas-

sifying the PA input data based on some crucial features re-

lated to the input data’s statistics and the selected PA operat-

ing point. The OFDM signal dataset built over these features

also trained less complex ML classifiers. The simulation re-

sults indicate this approach to be promising with an improved

performance/complexity trade-off than a single GMP model.

However, there is scope for further improvement in the per-

formance. Perhaps the class boundaries may be defined as

some function of both the input data statistics and PA behav-

ior instead. Exploring other Volterra models and comparison

with state-of-the-art schemes will be part of our future work.
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