
ar
X

iv
:2

21
0.

13
57

6v
2 

 [
cs

.S
D

] 
 1

4 
M

ar
 2

02
3

SPECTRAL CLUSTERING-AWARE LEARNING OF EMBEDDINGS
FOR SPEAKER DIARISATION

Evonne P.C. Lee, Guangzhi Sun, Chao Zhang, Philip C. Woodland

Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ U.K.
{epcl2,gs534,cz277,pcw}@eng.cam.ac.uk

ABSTRACT

In speaker diarisation, speaker embedding extraction models often

suffer from the mismatch between their training loss functions and

the speaker clustering method. In this paper, we propose the method

of spectral clustering-aware learning of embeddings (SCALE) to

address the mismatch. Specifically, besides an angular prototypi-

cal (AP) loss, SCALE uses a novel affinity matrix loss which di-

rectly minimises the error between the affinity matrix estimated from

speaker embeddings and the reference. SCALE also includes p-

percentile thresholding and Gaussian blur as two important hyper-

parameters for spectral clustering in training. Experiments on the

AMI dataset showed that speaker embeddings obtained with SCALE

achieved over 50% relative speaker error rate reductions using oracle

segmentation, and over 30% relative diarisation error rate reductions

using automatic segmentation when compared to a strong baseline

with the AP-loss-based speaker embeddings.

Index Terms— speaker diarisation, speaker embedding, spec-

tral clustering, foundation model, wav2vec 2.0

1. INTRODUCTION

Speaker diarisation is the task of finding ‘who spoke when’ in an

audio stream with multiple speakers. It has many applications in-

cluding speech recognition and information retrieval etc. In a typ-

ical diarisation pipeline, audio data that contains speech is divided

into fixed-length segments (e.g. 2 seconds), also known as win-

dows. A speaker embedding is then extracted for each window us-

ing deep neural networks trained for speaker classification, known as

d-vectors [1–5], and a speaker label is assigned via clustering algo-

rithms. In particular, spectral clustering [6] has been widely adopted

in many recent diarisation systems [7–9], which identifies groups

of nodes based on the graph affinity matrix computed from speaker

embeddings in a fully unsupervised process.

Using neural network-derived d-vectors in a diarisation system

often suffers from the mismatch between training and clustering

since d-vectors are not trained to discriminate the relative speaker

differences across multiple utterances which is particularly impor-

tant for unsupervised clustering. To mitigate such a mismatch, met-

ric learning losses such as the angular prototypical (AP) loss [10–

12] and the angular margin prototypical (AMP) loss [12] have been

applied when fine-tuning a d-vector extraction model for speaker

verification. Besides, work has been performed on supervised clus-

tering methods [13, 14], or adaptive hyper-parameters for spectral

clustering have been adopted [15]. Recently, representations from

pre-trained speech foundation models [16–18], such as wav2vec 2.0,

have achieved superior performance on speaker diarisation [19, 20].

Guangzhi Sun is supported by Cambridge Trust

However, a similar mismatch still exists since the pre-trained models

are often fine-tuned by speaker classification [20, 21].

To resolve the mismatch between the speaker embedding extrac-

tion model and the downstream unsupervised speaker clustering, in

this paper, we propose the spectral clustering-aware learning of em-

beddings (SCALE)1 method for fine-tuning the pre-trained represen-

tations for speaker diarisation. Specifically, an AP loss is used to

fine-tune the wav2vec 2.0 model to encourage the representations

to discriminate the relative speaker differences across multiple utter-

ances. To simulate spectral clustering during training, an extra affin-

ity matrix (AM) loss is used, which minimises the mean squared

errors between the reference and hypothesis affinity matrices and

helps learn the structure of the speaker embedding space. Further-

more, the two key steps in spectral clustering, namely the Gaussian

blurring and p-th percentile thresholding, are also accounted for dur-

ing training in both the AP loss and the AM loss. Speaker diarisation

experiments were performed on the widely used AMI meeting cor-

pus [22], as well as a combination of AMI and VoxCeleb1+2 [23,

24] datasets. Consistent and statistically significant improvements

were achieved using SCALE on both settings compared to both the

speaker classification baseline and a strong AP loss baseline.

The rest of the paper is organised as follows. Section 2 gives an

overview of related work. Section 3 explains about the speaker diari-

sation system. In Section 4, SCALE is presented. The experimental

setup is given in Section 5 and the results are presented in Section 6.

2. RELATED WORK

2.1. Wav2vec 2.0 for speech tasks

Wav2vec 2.0 [17] learns generic speech representations via self-

supervised learning on large amounts of unlabelled speech data. It is

trained to identify the correct quantised latent representation from a

set of distractors, where the distractors are sampled uniformly from

other masked time steps of the same utterance. Despite its success in

various speech tasks, fine-tuning the model has only achieved mod-

erate performance on speaker-related tasks, including speaker recog-

nition [25] and verification [26], and speaker diarisation [19, 20], due

to the mismatch between training and inference [27, 28].

2.2. Loss functions for speaker diarisation

For speaker-related tasks, metric-learning-based loss functions have

demonstrated competitive results [10]. Due to the constraints from

the unsupervised clustering present later in the pipeline, it is prefer-

able to extract speaker embeddings with small intra-speaker dis-

tances and large inter-speaker distances. Work in [29] proposed the

1Code available at https://github.com/epcl2/scale
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triplet loss which required a triplet to be selected meticulously as

the performance relied on the “difficulty” of the negative exemplars.

The prototypical loss was proposed in [30], where a query embed-

ding was pushed away from the centroid of all negative samples

based on the squared Euclidean distance in a mini-batch. Instead

of using only one utterance from each speaker as the query, in the

generalised end-to-end loss [31], every utterance in the mini-batch

served as a query. Similar to the prototypical loss, the angular pro-

totypical (AP) loss [10] used only one utterance from each class as

the query, with a cosine similarity-based metric. Work in [32] used

a contrastive self-supervised learning approach for text-independent

speaker verification, where they adopted the AP loss.

3. SPEAKER DIARISATION PIPELINE

The full speaker diarisation pipeline in this paper comprises sev-

eral stages, including voice activity detection (VAD), change point

detection (CPD), speaker embedding extraction and the spectral

clustering stage. Neural VAD and CPD were used, which fol-

lowed [8]. The VAD detects audio that contains speech and CPD

splits speech segments into speaker-homogeneous segments. Each

speaker-homogeneous segment is split into multiple windows of the

same length, and speaker embeddings are extracted for each window

using a fine-tuned wav2vec 2.0 encoder. Finally, spectral cluster-

ing is performed at the window level and all windows in the same

speaker-homogeneous segment are assigned to the same speaker.

3.1. Fine-tuning with angular prototypical loss

The wav2vec 2.0 encoder is fine-tuned with an extra output layer

based on the AP loss. For each mini-batch, N utterances, ua
1, . . . ,u

a
N

from N distinct speakers are randomly selected and act as the an-

chor utterances. Another N utterances, u
p
1
, . . . ,up

N , are selected

from the same N speakers associated with the anchor utterances,

which act as the positive utterances. For each pair of utterance

i (1 ≤ i ≤ N ), ua
i and u

p

i have the same speaker identity but

ua
i 6= u

p
i . All anchor utterances from other speakers j (j 6= i) in

the same mini-batch serve as the negative samples for speaker i.
The anchor and positive embeddings ea

i and e
p
i are derived from the

penultimate layer of the model (i.e. the final wav2vec 2.0 encoder

layer). The AP loss, LAP, used to optimise the model is then

LAP = −
1

N

N
∑

i=1

log
exp(Si,i)

∑N

j=1
exp(Si,j)

(1)

where Si,j is an element in the similarity matrix S, defined as the

scaled cosine similarity between each pair of embeddings. That is,

Si,j =

{

w · sim(ea
i, e

p
j) + b if i = j

w · sim(ea
i, e

a
j) + b otherwise

(2)

where sim(x,y) = (cos(x,y) + 1)/2, and w and b are trainable

scalar values. In S = (Si,j) ∈ R
N×N , the similarity score of di-

agonal terms is computed between the anchor embedding and the

positive embedding; the similarity score of the non-diagonal terms is

computed between anchor embeddings to simulate the situation dur-

ing spectral clustering. With the AP loss, the model explicitly min-

imises the distance among embeddings from the same speaker across

different utterances (intra-speaker distances) and maximises the dis-

tance among embeddings from different speakers (inter-speaker dis-

tances). This differs from the pre-training of wav2vec 2.0 where the

distractors were sampled from the same utterance.

3.2. Spectral clustering

In spectral clustering, the affinity matrix A is first constructed, where

Aij is the cosine similarity between the embeddings of the i-th and

j-th window for i 6= j. A modified version of spectral clustering

based on [3] was used, where a sequence of refinement steps was

applied to de-noise the affinity matrix. Two crucial steps, Gaussian

blur and row-wise thresholding are highlighted here.

(i) Gaussian blur: A Gaussian kernel with standard deviation σ
is used to smooth the data. Since window-level clustering is used,

neighbouring embeddings are often derived from the same utterance,

and hence should have similar values in the affinity matrix. Gaussian

blur preserves this property among neighbouring windows.

(ii) Row-wise thresholding: Any element whose value ranked less

than a particular row’s p-th percentile is set to be zero, which “zeroes

out” the affinities between embeddings from two distinct speakers.

Ideally, the similarity scores of the embeddings belonging to dif-

ferent speakers should be below this threshold so that they can be

“thresholded-out”, whereas those of the embeddings belonging to

the same speakers should be above this threshold and reserved.

4. SPEAKER CLUSTERING WITH SCALE

In Section 3, the model was fine-tuned without accounting for the

clustering stage. To further reduce the mismatch between training

and clustering, three steps are introduced to training, i.e. the AM

loss, absolute thresholding and relative thresholding with Gaussian

blurring. SCALE modifies the loss function such that the model is

aware of the clustering stage and the associated refinement steps.

4.1. Affinity matrix loss

The AM loss encourages the hypothesis affinity matrix A, con-

structed using real speaker embeddings to be close to the reference

affinity matrix with 1 for pairs from the same speaker and 0 for pairs

from different speakers. By sampling N pairs of utterances for N
distinct speakers in each mini-batch (as in Section 3.1), the reference

affinity matrix is an identity matrix I. LAM, the AM loss calculating

the mean squared errors between I and A, is

LAM =
1

N2

N
∑

i=1

N
∑

j=1

(Ii,j −Ai,j)
2

(3)

For LAM, A is equivalent to S in Section 3.1 with w = 1 and b = 0.

The final form of loss is a weighted combination of LAP and LAM as

below.

L = (1− α)LAP + αLAM (4)

where α is between 0 and 1. For more than two speakers, although

the ideal affinity matrix where embeddings from different speakers

are opposite to each other cannot be achieved, the main aim for the

AM loss is to increase the cosine distance for different speakers.

Threhsolding in the next subsection resolves this issue.

4.2. Absolute thresholding

For the row-wise thresholding step in spectral clustering, any value

less than the threshold was set close to zero. Hence, it is important

to encourage pairs of embeddings from different speakers to have

a similarity score below the threshold during training. Therefore, a

threshold, t, between 0 and 1 was used during training. The thresh-

old can be applied for both the AM and AP losses. For the AM loss,

a mask matrix M = (Mi,j) ∈ R
N×N is created to only calculate

2



Fig. 1. An example of A with its corresponding mask M. The

numbers in A are the cosine similarity scores between the speaker

embeddings of the corresponding columns and rows. The AM loss

is only calculated for cells that are not greyed out.

the positive pairs whose similarity scores are lower than t and the

negative pairs whose similarity higher than t. That is,

Mi,j =











1 if i = j,Ai,j ≤ t

1 if i 6= j,Ai,j ≥ t

0 otherwise

(5)

Thus the AM loss becomes

LAM =
1

∑

i,j
Mi,j

N
∑

i=1

N
∑

j=1

Mi,j(Ii,j −Ai,j)
2. (6)

The thresholding concept with t = 0.8 is illustrated in Fig. 1. This

enables the loss to focus only on the difficult positive and negative

pairs as the “easy negative pairs” would have been thresholded to

0. Similarly, thresholding can be imposed on the AP loss, where a

mask can be created such that the cross-entropy is calculated for all

positive pairs and the difficult negative pairs, as the positive pairs are

always needed.

4.3. Relative thresholding with Gaussian blurring

As relative thresholding was used in spectral clustering, to closely

simulate the row-wise thresholding during clustering, the Gaussian

blur and relative thresholding are integrated into speaker embedding

extraction model training. This improves the estimation of the actual

threshold by using Gaussian-blurred matrices. To achieve this, the

affinity matrix is first blurred to determine the relative threshold. The

threshold which is in general different for different rows is then used

on the unblurred affinity matrix to avoid gradient annihilation. The

detailed steps are given below and shown in Figure 2.

1. Compute the affinity matrix.

2. Replace all diagonal elements with 1 since, during clustering,

diagonal elements are the maximum of the row.

3. Perform Gaussian blurring on the affinity matrix.

4. Determine the relative threshold of each row by multiplying

t with the value of the diagonal element.

5. Use the relative threshold to create a single mask matrix for

both of the AP and AM losses.

5. EXPERIMENTAL SETUP

5.1. Data

The dataset used to fine-tune and evaluate the final speaker diarisa-

tion performance was the AMI meeting corpus [22], which consists

Fig. 2. A and A with Gaussian blur applied. The row-wise relative

thresholds are obtained as described in step 4, which are then applied

to A, giving the mask M. Rel. Thold. stands for Relative Threshold.

of meeting recordings with 4-5 speakers per meeting. The train-

ing set contains 135 meetings with 155 speakers. The development

(Dev) and evaluation (Eval) sets followed [8]. Moreover, the joint

VoxCeleb1 and VoxCeleb2 data were used as an intermediate fine-

tuning stage followed by the final fine-tuning on the AMI training

set in a two-stage fine-tuning setup. The input features of all models

were beamformed raw waveform with BeamformIt [33].

5.2. System specifications

During training, a 2-second window was sampled from each speech

segment as input. During inference, speaker embeddings were

extracted from the penultimate layer of the embedding extraction

model. An average pooling layer was added on top of the wav2vec

2.0 model to produce an embedding for each window. This was

followed by two additional fully connected layers, the first layer

projected the embedding to the desired dimension (128D) and the

second one was used to classify each input into a speaker label. The

wav2vec 2.0 encoder was frozen for the first 10% of fine-tuning

steps and a triangular learning rate scheduler was adopted. For two-

stage fine-tuning, SCALE was only applied to the stage on AMI as

there was a mismatch between the nature of the VoxCeleb and AMI

data. For the baseline model, the angular Softmax (A-Softmax) loss

[34, 35] was used for speaker classification, with m = 1.

During inference, each speaker-homogeneous segment was split

into 2-second windows with a 1-second overlap. Speaker embed-

dings were obtained for each window and spectral clustering de-

scribed in Sections 3.2 and 4 were applied. All windows in a segment

were assigned the same speaker label, following [8]. The hyperpa-

rameters for spectral clustering (the p-th percentile and standard de-

viation for Gaussian blur) were tuned on the Dev set by grid search

and applied to the Eval set directly. Three baselines were used, in-

cluding a non-wav2vec TDNN baseline following [8], a classifica-

tion baseline using A-Softmax loss for fine-tuning wav2vec 2.0 and

the strongest AP loss baseline that used the AP loss for fine-tuning.

5.3. Evaluation

Both reference and automatic segments were used for evaluation.

Automatic segments were found using the same VAD and CPD in

[8]. For the reference segmentation, the SER was scored with a

0.25-second collar on both sides of the segment without overlap. For

the automatic segmentation, DER which is the sum of the SER, the

missed speech (MS) and false alarm (FA), was reported. To avoid

scoring against a large amount of long silence in the original ref-

erence, diarisation results with automatic segmentation were scored

against the modified reference following [8]. In addition, a meeting-

by-meeting sign test was performed to show the statistical signifi-

cance of any improvements where appropriate.
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System SER (%)

Dev Eval

TDNN [8] 14.3 15.4

Classification with A-Softmax 9.6 19.3

AP loss 9.9 17.1

AP loss + AM loss 8.8 16.4

AP loss + AM loss (Abs. Thold.) 7.5 15.8

AP loss (Abs. Thold.) + AM loss (Abs. Thold.) 6.6 13.2

AP loss (Rel. Thold.) + AM loss (Rel. Thold.) 6.9 12.0

Table 1. SER on AMI Dev and Eval sets using systems with SCALE

fine-tuned on AMI only. TDNN is a non-wav2vec baseline while all

the other systems were fine-tuned wav2vec 2.0. Abs. Thold. refers

to the absolute thresholding (Sec. 4.2) and Rel. Thold. refers to the

relative thresholding (Sec. 4.3) for all tables.

6. RESULTS AND DISCUSSION

6.1. With one-stage fine-tuning

In this part of the experiment, wav2vec 2.0 was directly fine-tuned on

AMI with SCALE and the results are shown in Table 1. For SCALE,

α was set to 0.5 for the AP loss, and t was set to 0.8 and 0.95 for the

absolute and relative thresholding respectively. For relative thresh-

olding with Gaussian blur, σ was set to 1. The two wav2vec 2.0

baselines performed better on the Dev set while worse on the Eval

set compared to the TDNN baseline2

With the AM loss term added, the Dev and Eval sets SERs re-

duced, demonstrating the effectiveness of the AM loss term. Next,

when absolute thresholding was applied to the AM loss, reductions

in SERs on both Dev and Eval sets were found and the Eval set SER

was similar to the TDNN baseline while the Dev set DER is clearly

lower. Finally, by applying the SCALE method with absolute thresh-

olding on both AM and AP losses, the system achieved 27% relative

SER reductions on both the Dev and Eval sets compared to using

only the AP loss.

Applying thresholding on both losses was more effective than

only applying it on the AP loss, as the training process put more

emphasis on the harder pairs. When using a relative threshold, the

Dev SER was slightly higher than when using an absolute threshold,

but the Eval SER was lower. A meeting-level sign test showed that

the improvement achieved by SCALE compared to the classification

baseline was statistically significant, and there was no statistical dif-

ference between absolute and relative thresholding results.

6.2. With two-stage fine-tuning

In the two-stage fine-tuning, SCALE was applied to the final fine-

tuning on AMI, where α = 0.5 and t = 0.9 were used for both ab-

solute and relative thresholding. For relative thresholding, σ = 0.5
was used with Gaussian blur. The results are shown in Table 2.

As before, fine-tuning with the AP loss resulted in better diarisa-

tion performance than with the classification loss. When apply-

ing SCALE with thresholding on both the AM and AP losses, the

model performed much better than the baselines. Meanwhile, the

gap between the Dev and Eval SER became smaller, and it was also

discovered that embeddings with SCALE had a much smaller SER

change during hyperparameter tuning for spectral clustering. There-

fore, SCALE achieved better robustness to spectral clustering hy-

2A clear comparison with the literature is hard as various setups are used,
e.g. VBx[36] gives good error rates but cannot be directly compared.

System SER (%)

Dev Eval

Classification with A-Softmax 9.0 14.7

AP loss 7.0 9.6

AP loss + AM loss 6.1 9.7

AP loss + AM loss (Abs. Thold.) 6.4 11.2

AP loss (Abs. Thold.) + AM loss (Abs. Thold.) 3.3 4.7

AP loss (Rel. Thold.) + AM loss (Rel. Thold.) 3.4 4.9

Table 2. SER on AMI Dev and Eval sets using systems first fine-

tuned on VoxCeleb1+2, and then on AMI with SCALE. All systems

used fine-tuned wav2vec 2.0.

System DER (%)

Dev Eval

TDNN [8] 12.6 15.6

AP loss 14.1 17.1

AP loss (Abs. Thold.) + AM loss (Abs. Thold.) 9.9 10.1

AP loss (Rel. Thold.) + AM loss (Rel. Thold.) 9.9 11.2

Table 3. DERs on AMI Dev and Eval sets using automatic segmen-

tation. MS + FA rates was 5.2% and 4.9% on the Dev and Eval set.

perparameters. Overall, the best system was achieved using absolute

thresholding on both losses, resulting in a relative SER reduction of

53% and 51% on Dev and Eval sets respectively when compared

to the AP loss baseline. As before, the improvements were found

to be statistically significant, and there was no statistical difference

between the two thresholding methods.

6.3. With automatic segmentation

To investigate the effectiveness of using SCALE to fine-tune a

wav2vec 2.0 in the full speaker diarisation pipeline, experiments

were performed with automatic segmentation obtained after VAD

and CPD, with results shown in Table 3. The MS and FA rates

obtained after VAD and CPD were 1.2% and 4.0% respectively for

the Dev set, and 1.3% and 3.6% respectively for the Eval set. The

system trained with AP loss only, and SCALE systems with absolute

and relative thresholding on both losses were investigated, which

were the same as those in Table 2. Compared to the AP loss, using

SCALE with absolute thresholding achieved the best performance

among systems, with a relative reduction of 30% an the Dev set and

40% on the Eval set.

7. CONCLUSIONS

This paper proposed SCALE, spectral clustering-aware learning of

embedding framework to fine-tune the pre-trained speaker represen-

tations for speaker diarisation. SCALE used a combination of the an-

gular prototypical (AP) and the affinity matrix (AM) losses to learn

the structure of the embedding space, and to reduce the mismatch be-

tween the speaker embeddings and spectral clustering. SCALE also

includes the p-percentile thresholding and Gaussian blur of spectral

clustering into training to further reduce the mismatch. Experiments

on the AMI data with SCALE achieved a relative SER reduction of

53% and 51% on the Dev and Eval sets respectively, compared to the

AP loss baseline using oracle segmentation. SCALE also achieved

30% and 40% relative DER reduction on the Dev and Eval sets re-

spectively with automatic segmentation.
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