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Abstract— In this paper, we exploit the spiked covariance

structure of the clutter plus noise covariance matrix for radar sig-

nal processing. Using state-of-the-art techniques high dimensional

statistics, we propose a nonlinear shrinkage-based rotation invariant

spiked covariance matrix estimator. We state the convergence of

the estimated spiked eigenvalues. We use a dataset generated

from the high-fidelity, site-specific physics-based radar simulation

software RFView to compare the proposed algorithm against the

existing Rank Constrained Maximum Likelihood (RCML)-Expected

Likelihood (EL) covariance estimation algorithm. We demonstrate

that the computation time for the estimation by the proposed

algorithm is less than the RCML-EL algorithm with identical

Signal to Clutter plus Noise (SCNR) performance. We show that

the proposed algorithm and the RCML-EL-based algorithm share

the same optimization problem in high dimensions. We use Low-

Rank Adaptive Normalized Matched Filter (LR-ANMF) detector

to compute the detection probabilities for different false alarm

probabilities over a range of target SNR. We present preliminary

results which demonstrate the robustness of the detector against

contaminating clutter discretes using the Challenge Dataset from

RFView. Finally, we empirically show that the minimum variance

distortionless beamformer (MVDR) error variance for the proposed

algorithm is identical to the error variance resulting from the true

covariance matrix.

Index Terms—Clutter plus Noise Covariance Estimation, Spiked

Covariance Model, High Dimensional Data, Nonlinear Shrinkage,

Rotation Invariant Estimator, RFView, LR-ANMF
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I. INTRODUCTION

Clutter plus noise covariance matrix estimation is

an integral part of radar signal analysis. In a high-

dimensional setting, the sample size is of the same order

of magnitude as the dimension of the covariance matrix.

Therefore, the sample covariance matrix is no longer a

reliable estimator of the clutter plus noise covariance

matrix as it becomes singular.

To mitigate such singular nature of the sample covari-

ance matrix, we exploit the spiked covariance structure

for high dimensional settings proposed in [1–3] to model

the clutter plus noise covariance matrix. We propose a

rotation invariant nonlinear shrinkage-based estimator to

estimate the clutter plus noise covariance matrix.

The bulk of the eigenvalues of the spiked covariance

matrix are identical, corresponding to the noise com-

ponent of clutter plus noise covariance matrix. A finite

number of spiked eigenvalues significantly exceed the

bulk eigenvalues in magnitude, accounting for the clutter

component of the clutter plus noise covariance matrix.

We model the clutter in the Challenge Dataset simu-

lated by RFViewr [4, 5] as a spiked covariance structure.

RFView is a high-fidelity, site-specific, physics based

M&S tool, which enables a real time instantiation of

the RF environment. This has been extensively vetted

using measured data from VHF to X band with one case

documented in [4].

As an illustrative example, consider an airborne radar

looking down on a heterogeneous terrain, consisting

of mountains, water bodies, and foliage simulated by

RFView as shown in Fig.1. Fig.1 displays the relative

power of the returned signal from such heterogeneous

terrain in Southern California near San Diego. We observe

that the regions of high-power returns have less area

compared to the regions of low-power return, with noise

power higher than the low-power returns. This is evident

from the eigenvalue plot of the clutter plus noise covari-

ance matrix in Fig. 2, computed from the return signal.

A large number of eigenvalues of the clutter covariance

matrix fall below the noise power.

In this paper, we use a nonlinear shrinkage-based ro-

tation invariant estimator developed in [3] to estimate the

clutter plus noise covariance matrix in a high dimensional

setting. In the spiked covariance model, we only need to

estimate the noise power and the spiked components.

We show that for the estimation of covariance matrix

of dimension p, the proposed algorithm performs O(p)
real-valued multiplications for the joint noise power-

clutter rank estimation as compared to the O(p2) in the

RCML-EL1 algorithm with identical SCNR and error

variance. Additionally, we state the convergence results

for the estimated eigenvalues and bounds for normalized

SCNR for the proposed estimator. We test the target

detection performance of the estimator using Low-Rank

1RCML-ELrepresents the RCML covariance estimator [6] with the

clutter rank and noise power obtained by the expected likelihood (EL)

approach [7].
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Fig. 1: Clutter returns from the littoral scene with moun-

tains and water showing shadow regions (dark blue) as

well as stronger signal components (yellow).
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Fig. 2: The clutter plus noise covariance matrix formed

by the return signal given in Fig. 1 gives evidence that

most of the components of clutter (red) are below the

noise floor. The first 25 components are above the noise

floor. Therefore, the covariance matrix exhibits a spiked

covariance structure.

Adaptive Normalized Matched Filter (LR-ANMF) detec-

tor. We empirically show the robustness of the detector

against contaminating clutter discretes. We apply the

proposed algorithm on the Challenge Dataset simulated

by RFView software.

A. Related Works

The problem of covariance matrix estimation, [8], with

data deficient scenario has received considerable attention

in the radar signal processing literature. In the data

deficient scenarios, the sample covariance matrix is no

longer a reliable estimator as it becomes ill-conditioned.

To address such ill-conditioning, methods like diagonal

loading [9–15] and factored space-time approaches [16]

have been proposed. Data dependent techniques include

Principal Components Inverse [17], Multistage Wiener

Filter [18], Parametric Adaptive Matched Filter [19], and

EigenCanceler [20]. Data independent approaches include

JDL-GLR [21].

In a high-dimensional setting, the properties of co-

variance matrices are explained by the Random Matrix

Theory as stated in [22–25]. In such high dimensional

settings, shrinkage estimators have been developed to esti-

mate covariance matrices in signal processing and finance.

Shrinkage estimators have been used in wireless commu-

nications [26] to estimate the channel matrices, in array

signal processing to estimate direction of arrival [27] and

in finance for Markowitz Portfolio optimization [28–31].

Shrinkage methods include Ledoit-Wolf shrinkage estima-

tor [32], regularized PCA [33], Ridge and Lasso shrinkage

estimators [34] and regularized M-estimators [35].

In radar signal processing, the covariance matrices

often contains a low-rank structure corresponding to

the clutter. The covariance matrices are called clutter

plus noise covariance matrices. Covariance estimation

algorithms developed in [7, 36–39], propose estimation

schemes assuming a rank sparse clutter covariance matrix

in a high dimensional setting. These papers use Brennan’s

Rule which gives an estimate of the rank depending on

the dominant components of the clutter and the jammers.

However, as demonstrated in [40–42], Brennan’s rule fails

when a plethora of real-world effects such as internal

clutter motion, mutual coupling between antenna array

elements arise on account of the system and environ-

mental factors. In our paper, the data generated from the

high fidelity, site-specific, physics-based, radar scenario

simulation software RFview is used where the Brennan

rule does not prevail as documented in [4].

To address these issues we exploit the spiked co-

variance structure, as proposed in [1, 2, 43, 44], of the

clutter plus noise covariance matrix. We use the nonlinear

shrinkage estimation techniques of [3] to estimate the

covariance matrix. Spiked covariance models have been

used to estimate direction of arrival (DOA) in array

signal processing, as demonstrated in [45], and for target

detection in [46]. We are using the spiked covariance

model to estimate the clutter plus noise covariance matrix.

B. Main Results and Organization

The main results and organization of this paper are as

follows:

1) In Sec. II-A, we formulate the rotation invariant

estimators. The asymptotic model for large random

matrices and the spiked covariance model for the

clutter plus noise covariance matrix is defined in

Sec. II-B.

2) In Sec. III, we present the algorithm proposed in [3]

for spiked covariance matrix estimation. In Sec. III-

A, Theorem 1 shows a strong law of large numbers

(namely, the estimated spiked eigenvalues converge
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almost surely to a constant) and satisfy a Central

Limit Theorem. This is due to the fact that, even

though we are in a high-dimensional setting, the

number of spikes are constant. Empirical verification

of the convergence properties for RFview Challenge

Dataset is provided. We derive the bounds for nor-

malized SCNR, ρ, in Sec. III-B. In Sec. III-C, we

establish that the proposed algorithm and the RCML-

EL estimation algorithm in high dimensions have

similar performance due to the fact they share a

common optimization problem. In Sec. III-D, we

employ the LR-ANMF detector for target detection

when using a rotation invariant estimator.

3) In Sec. IV-A, we demonstrate that the proposed algo-

rithm has identical SCNR compared to the RCML-

EL algorithm for the Challenge Dataset simulated

using RFView. We further show that the computation

time of estimation by the proposed algorithm is less

than that of the RCML-EL algorithm. In Sec. IV-

B, we compute the target detection probabilities for

various false alarm probabilities and SCNR and em-

pirically show its robustness with respect to contam-

inating clutter discretes. In Sec. IV-C, we compute

the error variance of the MVDR beamformer for the

proposed algorithm.

II. Rotation Invariant Estimator and Spiked

Covariance Model

This section is organized as follows. Sec. II-A presents

a general rotation invariant estimator. Sec. II-B describes

the high-dimensional spiked covariance model.

We use a narrowband baseband equivalent model used

in [4]. The radar transmits a complex-valued waveform

s(k) ∈ C and receives a complex-valued return y(k) ∈ C

in discrete time:

y(k) = ht(k) ⊛ s(k) + hc(k) ⊛ s(k) + n(k) (1)

Here ⊛ is the convolution operator and k denotes discrete

time. ht ∈ C is the complex valued target impulse

response and hc ∈ C is the complex valued clutter

impulse response. The noisy measurement n ∈ C is the

additive white Gaussian noise with variance σ2 with zero

mean. The noise samples are independent, identically,

distributed (i.i.d).

In matrix-vector notation (1) reads

y = Ht s+Hc s+ ns (2)

where Ht, Hc ∈ Cp×q are Toeplitz matrices constructed

by the impulse responses ht(k) and hc(k), respectively.

y ∈ Cp is return signal of length p and s ∈ Cq is

the waveform of pulse length q. The noise ns ∈ Cp

is a complex valued Gaussian distributed vector where

ns ∼ N (0, σ2 I) and has i.i.d samples.

We define the clutter plus noise return as yc

yc := Hc s+ ns (3)

A. Rotation Invariant Estimator

In this subsection, we describe the rotation invariant

estimation for the clutter plus noise covariance estimator.

Rotation invariant estimators have the same eigenvectors

as that of the sample covariance matrix and the eigenval-

ues of the estimators are a function of the eigenvalues of

the sample covariance matrix.

The clutter plus noise covariance matrix is given by

R = Rc + σ2 I (4)

where the clutter covariance matrix is

Rc := E[Hc ss
H Hc

H ] (5)

and σ2 I is the noise component. The eigendecomposition

of clutter plus noise covariance is:

R =

p
∑

i=1

λiuiu
H
i (6)

with eigenvalues λi and eigenvectors ui. The sample

covariance matrix R̂n is:

R̂n =
1

n

n
∑

k=1

yc,k yc
H
,k (7)

where yc is the clutter plus noise return defined in (3)

which will be used as training data samples2, k is the

discrete time and n are the number of training data

samples. The spectral decomposition of R̂n for a given

training data size n is:

R̂n =

p
∑

i=1

λ̂i,nvi,n v
H
i,n (8)

where λ̂i,n are the eigenvalues and vi,n are the eigenvec-

tors of R̂n. The spiked covariance matrix estimate for a

given number of data samples n is:

R̄n =

p
∑

i=1

λ̄i,n vi,n vH
i,n (9)

where λ̄i,n are the eigenvalues of R̄n, with eigenvectors

vi,n identical to those of the R̂n in (8). The spiked

covariance estimator is a rotation invariant estimator.

Additionally, we use normalized SCNR to compare

covariance estimation methods. We denote ρ to define the

normalized SCNR as:

ρ =
(yt

H R̄−1 yt)
2

(yt
H R−1 yt)(yt

H R̄−1 RR̄−1 yt)
. (10)

where yt = Aθ ⊗ Af is the Kronecker product of angle

steering vector [Aθ]i = exp[−jπi sin(θ)], 1 ≤ i ≤ N and

the Doppler steering vector [Af ]i = exp[−j2πifd], 1 ≤
i ≤ K . N and K are defined in Sec. IV. The dimension

of the covariance matrix is p = N ×K .

In the next section, we will show that λ̄ is a nonlinear

function of λ̂, where the nonlinearity depends on the loss

function.

2The training data is collected by RFView when no target is present. We

assume that the clutter plus noise covariance matrix is stationary and is

independent of the target presence. This is due to the fact that eigenvalue

component due to the target is independent of the eigenvalues of the

clutter plus noise covariance matrix in the spiked covariance model

which is defined in Sec. II-B.
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B. Clutter Plus Noise Covariance Matrix Modelling

using Large Random Matrices

In this subsection, we define the spiked covariance

model and the asymptotic regime for the high dimensional

setting. We use this framework to model the clutter plus

noise covariance matrix.

Definition 1:

A spiked covariance matrix R is a p×p positive definite

Hermitian matrix with eigenvalues (λ1, λ2 · · · , λp) such

that for a finite r ≪ p, λ1 ≥ λ2 ≥ λr > σ2 and λr+1 =
· · · = λp = σ2 > 0.

We make two assumptions

1) The clutter plus noise covariance matrix has a spiked

covariance structure given in Definition 1. The clutter

plus noise covariance matrix is given in (4) where

clutter covariance matrix Rc has rank r with eigen-

values λi − σ2, 1 ≤ i ≤ r. The noise covariance

matrix σ2 I is diagonal.

2) There exists a γ ∈ (0, 1) such that for given training

data size n with the dimension of the covariance

matrix as p such that:

p

n
→ γ, p, n → ∞, p < n (11)

Data displayed in Fig. 1 and Fig. 2 satisfies these condi-

tions. In Fig. 2, we see that the clutter covariance matrix

can be approximated by a rank r positive semi-definite

matrix as the remaining p− r components are below the

noise floor.

We assume that clutter plus noise covariance matrix

is spiked if the rank of the clutter matrix is less than

a fraction χ of the clutter plus noise covariance matrix.

For convenience, we choose χ = 0.1, since it empirically

fits with the data simulated by RFView. A more general

approach involves model order (dimension) estimation.

In the classical statistical setting, this is well studied in

terms of penalized likelihood methods such as Akaike

Information Criterion (AIC) [47], Minimum Description

Length (MDL) [48], information theoretic criteria [49],

statistical techniques [50], data dependent techniques [51],

and min-max approaches such as the Embedded Expo-

nential Families [52]. However, in the high dimensional

setting considered in this paper, estimating the model

order (number of spikes) is a difficult problem not ad-

dressed in this paper. In [7], the RCML-EL algorithm

uses Brennan’s rule, [8], as an initial estimate for the

rank of the clutter covariance matrix to determine the

model order. RCML-EL algorithm correctly estimates the

rank as compared to the AIC and MDL techniques. In

Sec. III-C, since the proposed algorithm and RCML-

EL algorithm share similar optimization problem, the

proposed algorithm correctly estimates the model order.

The spiked covariance property helps us to deal with

the clutter plus noise covariance matrices in high dimen-

sions, which is frequently encountered in radar signal

processing. With this knowledge, we define the nonlinear

shrinkage-based rotation invariant estimator.

III. Nonlinear Shrinkage Estimation

In this section, we propose the rotation invariant

estimator using nonlinear shrinkage of the eigenvalues of

the sample covariance matrix. We state the convergence

of the estimated eigenvalues in Theorem 1 in Sec. III-A.

It is to be noted that we use the terms spiked eigenvalues

and the leading r eigenvalues of the covariance matrix

interchangeably for a fixed clutter covariance matrix with

rank r. We outline the computation cost of the pro-

posed algorithm. We propose bounds for the normalized

SCNR(ρ) in Sec. III-B. We show the similarity of SCNR

performance between the proposed algorithm and the

RCML-EL algorithm in high dimensions in Sec. III-

C. We conclude this section by stating the Adaptive

Normalized Matched Filter for target detection for the

proposed algorithm in Sec. III-D.

The spiked covariance matrix R is stated in Defini-

tion 1. Estimation of the spiked covariance matrix R̄n as

defined in (9), consists of two sub-problems: estimation

of the spiked eigenvalues and the estimation of the noise

power σ2.

1) The estimate of the noise power is given as stated in

[3] is

σ̂2 =
λ̂med

µmed
(12)

where λ̂med is the median of the eigenvalues of

the sample covariance matrix R̂n and µmed is

the median of the Marchenko-Pastur distribution

with parameter γ stated in (11). The proof of the

consistency of the noise power estimator is given in

[3, Sec. 9].

2) The shrinkage function η∗(·) as stated in [3] is

η∗(λ̃i) =

{

η(f(λ̃i)) λ̃i > (1 +
√
γ)2

1 λ̃i ≤ (1 +
√
γ)2

(13)

where λ̃i = λ̂i/σ̂
2, λ̂i are the eigenvalues of the

sample covariance matrix R̂ and σ̂2 is defined in (12).

The function f(·) given by

3f(x) =
x+ 1− γ +

√

(x+ 1− γ)2 − 4x

2
(15)

and η(·) for Stein loss as stated in [3], LSt =
tr(R−1 R̄− I)− log det(R−1 R̄), is given by

ηSt(x) =
x

c(x)2 + s(x)2 x
(16)

3It is to be noted that (14) is the inverse mapping for

g(x) =

{

x+ γ x

x−1
x > 1 +

√
γ

(1 +
√
γ)2 1 ≤ x ≤ 1 +

√
γ

(15)

when x > (1 +
√
γ)2, it is the relationship between the λ̂ and λ and

has been explained in [3].
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where c(·) is given by

c(x) =

{
√

1−γ/(x−1)2

1+γ/(x−1) x > 1 +
√
γ

0 x ≤ 1 +
√
γ

(17)

s(·)2 = 1− c(·)2 and γ is given in (11).

The eigenvalues λ̄i,n of the estimator R̄n are given

by:

λ̄i,n = σ̂2 η∗(λ̃i) (18)

where σ̂2 is given in (12) and η∗(λ̃i) is given in (13).

The proof of optimality of this estimator is given in

[3, Sec. 6].

A pseudo-code to compute the estimator is stated in

Algorithm 1.

Algorithm 1 Nonlinear Shrinkage Algorithm for Spiked

Covariance Matrix Estimation

1: Evaluate the eigenvalue decomposition of sample

covariance matrix R̂n as done in (8) for a given

number of data samples n.

2: Compute the noise power σ̂2 by (12).

3: Compute the eigenvalues λ̄i,n of the estimator as in

(18).

4: Using eigenvalues computed in Step 3, the estimated

covariance matrix R̄n is given by (9).

A. Convergence of Eigenvalues of the Proposed
Estimator

Although we are dealing with finite p and n, in

Theorem 1 we state that the spiked eigenvalues converge

almost surely to a constant and satisfy a Central Limit

Theorem when both p, n → ∞, given that the number of

spikes r is fixed.

We assume the following for a covariance matrix R

with dimension p:

A1. Leading r distinct eigenvalues λ1, λ2, · · · , λr with

multiplicity 1 and lower bounded by 1 +
√
γ.

A2. Eigenvalues λr+1 = 1, · · · , λp = 1.

Theorem 1:

Consider the estimator R̄n of dimension p with eigen-

values (λ̄1,n, λ̄2,n, · · · , λ̄p,n) that estimates the spiked

covariance matrix R satisfying the assumptions (A1) and

(A2). Assume p/n → γ ∈ (0, 1), p, n → ∞. Then

λ̄i,n’s, 1 ≤ i ≤ r satisfy

λ̄i,n
a.s.−−→ η∗(βi) (19)

Additionally, if p/n− γ = o(n−1/2), then
√
n(λ̄i,n − η∗(βi))

d−→ N (0, α2
i (η

′

(βi))
2) (20)

where η∗(·) is given by (13) and η(·) is given by (16).

βi = λi +
γ λi

λi−1 , α2
i = 2λ2

i

(

1− γ
(λi−1)2

)

and γ is given

(11).

Proof: Almost sure convergence can be proved by apply-

ing Continuous Mapping Theorem on [2, Thm. 2] with

-4 -3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Fig. 3: The double version of the K-S test with reference

data from the prescribed distribution (20) and the test data

from the Challenge Dataset verifies that the Challenge

Dataset satisfies the assumptions for Thm.1 with p-value

of 0.8390.

function η. The in-distribution convergence can be proved

by applying the delta method on [2, Thm. 3] with function

η. �

We empirically showed the validity of assumptions of

Theorem 1 for the Challenge Dataset using the double

version of the Kolmogorov-Smirnov (K-S) test with sig-

nificance level 5% and 1024 Monte Carlo simulations.

The reference data was generated from the prescribed

distribution in (20) and the test data was generated from

the Challenge Dataset. The CDF plot in Fig.3 for the

test and reference data reveals that the Challenge Dataset

satisfies the assumptions for Theorem 1.

Computation Cost

Algorithm 1 does not require prior knowledge of the

number of spikes. Step (2) and Step (3) in Algorithm 1

determine the eigenvalues that are above the noise floor.

The computation cost of the algorithm is given below:

1) The eigenvalue decomposition requires O(p3) real-

valued multiplications.

2) The noise power estimation, step (2), is a median

finding algorithm that requires O(p) real-valued mul-

tiplications.

3) The nonlinear shrinkage, step (3), requires O(r) real-

valued multiplications, r being the rank of the clutter

covariance matrix.

We compare algorithm 1 to the RCML-EL algorithm

whose computational cost is given as follows:

1) The eigenvalue decomposition step takes O(p3) real

valued multiplications.

2) The joint noise and rank estimation step takes O(p2)
real valued multiplications.

The difference is in the noise and rank estimation step; Al-

gorithm 1 takes O(p) real-valued multiplications and the

Jain et al.: Radar Clutter Covariance Estimation: A Nonlinear Spectral Shrinkage Approach 5



RCML-EL algorithm takes O(p2). This will be demon-

strated in Sec. IV-A empirically.

B. Bounds for ρ

In this section, we derive the lower and upper bounds

for the normalized SCNR(ρ) using results from [53].

We rewrite ρ from (10)

ρ =
‖x‖22

(xHR̄− 1

2RR̄− 1

2x)(xHR̄
1

2R−1R̄
1

2x)
, (21)

where x = R̂− 1

2yt. Without loss of generality, assume

‖x‖ = 1. We use the matrix version of Kantorovich’s

inequality to bound the denominator. For a positive semi-

definite matrix, A, and a unit vector x, ‖x‖2 = 1,

(xHAx)(xHA
−1

x) ≤ 1
4 (κ(A) + 1

κ(A) + 2), where κ(A)
is the condition number of the matrix A. By Cauchy-

Schwartz Inequality (xHAx)(xHA−1x) ≥ 1. We lower

bound ρ by:

ρ ≥ 1
1
4 (κ(A) + 1

κ(A) + 2)
(22)

where A = R̄− 1

2RR̄− 1

2 . From [53], we have

κ(A) =
max [1,max1≤i≤r ν+(λ

∗
i , ηi)]

min [1,min1≤i≤r ν−(λ∗
i , ηi)]

(23)

where

ν±(λ
∗
i , ηi) = T/2±

√

T 2/4−D

D = ηSt/λ∗, T = (
s2 + ηStc2

λ∗
+ c2 + ηSts2)

ηSt defined in (16) and λ∗
i = λi/σ

2.

In Sec. IV we shall demonstrate that the proposed

algorithm performs within the derived bounds.

C. Performance similarity between Proposed
Algorithm and RCML-EL Algorithm

In this section, we show that the proposed algorithm

and the RCML-EL algorithm will give similar SCNR

performance.

The optimization problem for clutter plus noise co-

variance matrix estimation assuming noise power to be

unity defined in [6, (35)] is:

min
λ̄

dT
λ̄− 1T log λ̄

s.t. F λ̄ � g

E λ̄ = h

(24)

where di = λ̂i, recall from Sec. II that λ̄ is eigenvalue

of the estimator and λ̂ is the eigenvalue of the sample

covariance matrix.

F =
[

UT −Ip×p Ip×p

]T ∈ R
3p×p

g =
[

0T
p×1−ǫ

T
p×1 1T

p×1

]T ∈ R
3p×1

ǫp×1 = [ǫ, . . . , ǫ]p×1, ǫ > 0,

U =











1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
...

. . .
. . .

. . .
...

...

0 . . . . . . . . . 1 −1











∈ R
p×p

E =

[

0r×r 0r×p−r

0(p−r)×r Ip−r

]

∈ R
p×p

h =
[

0, 0, · · · , 0r, 1, 1, · · · , 1
]T ∈ R

p×1.

The first constraint in (24) enforces λ̄i to be positive

in descending order and the second constraint enforces

the last p − r eigenvalues of the estimator to be equal.

These constraints enforce a spiked covariance matrix

structure on the estimator, stated in Definition 1, in a high

dimensional setting. In [3], the optimization problem for

estimating leading r eigenvalues for Stein loss under a

spiked covariance model is given by:

min
λ̄i, 1≤i≤r

ai λ̄i − bi log λ̄i +mi (25)

where ai = c2/g(λ̂i) + s2, bi = 1 and mi = 1/g(λ̂i) −
1− ai + log(f(λ̂i)); f(·) is given in (14), g(·) is given in

(15), c(·) and s(·) are given in (17).

Since the cost function of (24) is identical to (25)

within a constant and the constraints of (24) are implicit to

the optimization problem of (25), the normalized SCNR,

ρ and the rank of the clutter covariance matrix, r, will be

identical.

In Sec. IV we shall demonstrate that the SCNR

performance for the proposed algorithm is identical to the

RCML-EL algorithm with a reduced computation time.

D. Low-Rank Adaptive Normalized Matched Filter

Detection

In this section, we shall use the Low-Rank Adaptive

Normalized Matched Filter (LR-ANMF) detector for a

rotation-invariant estimator as stated in [54]. This detec-

tion scheme is independent of the eigenvalue shrinkage in

(13) and only depends on the eigenvectors of the sample

covariance matrix in high dimensions. This detector is the

same for both the proposed algorithm and the RCML-EL

algorithm.

We have the following binary hypothesis for a single

target:

H0 :y ∼ N (0,R)

H1 :y ∼ N (hts,R)
(26)

where H0 is the null hypothesis when no target is present

and H1 is the alternate hypothesis when the target is

present. The target signal s is defined in the same way as

yt in (10) with a complex-valued amplitude ht and R is

the clutter plus noise covariance matrix. The test statistics

for the LR-ANMF with n data samples, as stated in [55],

is

Tn =
|s Π̂n y|2
‖Π̂n s‖2

> δ (27)
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where

Π̂n = I−
r

∑

i=1

vi,n vH
i,n

is a projection matrix constructed using the eigenvectors

vi,n defined in (8) corresponding to the r spikes of the

spiked covariance matrix and δ is the detection threshold.

Recall from Sec. II-B that r is the rank of the clutter

covariance matrix. The knowledge of noise power σ2 is

not impacting the detection since we are using assumption

(A1) in Sec. III-A where σ2 has already been estimated.

We present the convergence theorems from [54] that state

the in-distribution convergence of the test statistics under

H0 and H1.

Theorem 2 ([54], Thm 2):

Under H0 and assumption (A1) the test statistics Tn

satisfies:

Tn
D−→ χ2(2) (28)

where χ2(2) is a chi-squared distribution with one com-

plex degree of freedom. The probability of false alarm

with detection threshold δ is:

PFA = lim
n→∞

P(Tn > δ|H0) =

∫ ∞

δ

exp(−x) dx

= exp (−δ)

(29)

Theorem 3 ([54], Thm 3):

Under H1 and assumption (A1) the test statistics Tn

satisfies:

lim
n−→∞

sup
x∈R

|P(Tn < x)− F (x; 2,∆)| −→ 0 (30)

where F (x; 2,∆) denotes the cumulative distribution of

a non-central χ2 distribution with one complex degree of

freedom and non-centrality parameter ∆.

∆ =
2|ht|2
ν

(31)

ht is defined in (26),

ν =
1

‖Πs‖2 +∑r
i=1(1 − c2(λi))|sH ui|2

+

∑r
i=1(λi − 1)(1− c2(λi))|sH ui|2

(‖Πs‖2 +∑r
i=1(1− c2(λi))|sH ui|2)2

where Π = I − ∑r
i uiu

H
i , c(·) is defined in (17), ui

defined in (6), r is rank of the clutter covariance matrix

and s defined in (26). The corresponding target detection

probability with detection threshold δ is:

PD = exp(−∆)

∞
∑

k=0

∆k

k!

[

1−
∫ δ

0
xk exp(−x) dx

Γ(k + 1)

]

= lim
n→∞

P(Tn > δ|H1)

(32)

where Γ(·) is the gamma function.

In Sec. IV-B, we compute the detection probabilities

for different false alarm probabilities over a range of

signal-to-noise ratios (SNR), we empirically evaluate the

robustness of the detector for detecting a single target in

the presence of multiple targets that act as contaminating

clutter discretes. Contaminating clutter discretes are ad-

ditional spikes that are present due to undesired targets.

They are not part of clutter spikes and change the clutter

covariance matrix rank from r to r̂.

To conclude this section, we proposed the nonlinear

shrinkage-based rotation invariant estimator by using the

sample covariance matrix. We stated the convergence of

the spiked eigenvalues of the estimator. We stated the

bounds for the normalized SCNR. The equivalence of the

RCML-EL algorithm in a high dimensional setting to the

proposed algorithm was established. A detector for target

detection was stated for the proposed algorithm.

IV. NUMERICAL EXAMPLES

We use a dataset generated using RFViewr software

that provides an accurate characterization of complex RF

environments. It uses stochastic transfer functions [4]

to simulate the high-fidelity RF clutter encountered in

practice.

The dataset consists of a data cube in the time domain

and is a multi-dimensional N ×K × n matrix, where N
is the total number of (fast-time), K is the slow time and

n is the number of range gates in a specified coherent

processing interval. For our case, we use the range gates

as the number of data samples n.

In Sec. IV-A, we use the Challenge Dataset generated

by RFView. We compare the performance of the Algo-

rithm 1 against the RCML-EL based estimation algorithm

given in [7]. We plot the normalized SCNR (ρ), stated in

(10), as a function of training data size n, the normalized

Doppler, and the normalized angle. For all the plots

we are simulating in the regime where n = O(p), i.e.,

1/10 < p/n < 1. We also demonstrate the computation

times for our proposed algorithm and the RCML-EL

algorithm for various n.

In Sec. IV-B, we compute the target detection prob-

abilities over a range of false alarm probabilities and

SCNR. In Sec. IV-C, we compute the error variance of the

minimum variance distortionless response beamformer

using the proposed algorithm and compare it with the

error variance corresponding to the RCML-EL algorithm

and the true covariance matrix.

We only compare with the RCML-EL algorithm be-

cause it outperforms the Sample covariance matrix SMI,

FML [56], Chen’s algorithm [57] and AIC [47], as docu-

mented in [7] in all metrics. Since the theory underlying

Theorem 1 holds only in the regime of n > p, no definitive

statements can be made for the case of n < p. Therefore,

the validity of the proposed algorithm is restricted to the

case of n > p.

We simulated our results Matlabr-R2021b on

Windows-11 OS running on AMD Ryzen 7 5800H mi-

croprocessor with 16GB RAM.
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A. SCNR Performance

The Challenge dataset contains radar target and clutter

returns generated by RFViewr. The scenario in Chal-

lenge Dataset has 4 targets and ground clutter containing

buildings. This scenario involves an airborne monostatic

radar flying over the Pacific Ocean near the coast of San

Diego looking down for ground moving targets. The data

spans several coherent processing intervals as the platform

is moving with constant velocity along the coastline. In

Table II-IX, Appendix we state all the parameters used

for this scenario.

The data set consists of a 32 × 64 × 2335 data cube

matrix which has the clutter impulse response over 32

channels with 64 pulses and 2335 data samples. We

concatenate 8 channels to get a clutter impulse response

matrix of size 512 × 2335. We convolve the rows of

the clutter impulse response matrix with a waveform

of pulse length 1000 to get a clutter return matrix of

dimension 512 × 3334. We add additive white Gaussian

noise with zero-mean and variance σ2 = 5 × 10−14 to

the resulting clutter return matrix. The dimension of the

clutter plus noise covariance matrix is 512 × 512. We

vary n in the multiples of p till n < 3334 to get the

sample covariance matrix. For each plot, we use 1024

Monte Carlo simulations. For normalized Doppler, we fix

the angle interval at π
180 and marginalize over it. For the

normalized angle, we fix the Doppler interval at π
50 and

marginalize over it. For both cases, we fix n = 1024.

Fig. 4 displays the average normalized SCNR vs. the

number of data samples n. The run-time for different n
is given in Table I. Normalized SCNR vs. normalized

Doppler is given in Fig. 5 and normalized SCNR vs.

normalized angle in Fig. 6.

Training Data

Size (n)

Proposed Algorithm RCML-EL algorithm

512 0.012035s 0.107116s

1024 0.003046s 0.070876s

1536 0.002028s 0.053037s

2048 0.002026s 0.050819s

2560 0.002095s 0.050504s

TABLE I: Algorithm 1 takes less computation time as

compared to the RCML-EL algorithm for the Challenge

Data set.

B. Target Detection

In this section, we use results from Sec. III-D with

the target having a Doppler of fd = 0.2 and an angle

of θ = 30◦. We plot the target detection probability PD

as we vary false alarm probability PFA from 10−5 to

10−1 in the multiples of 10 from SCNR=-10dB to 30dB.

We use n = 1024 data samples with 1024 Monte Carlo

Simulations.

The Challenge Dataset contains 4 targets. We consider

detecting a single target with remaining targets constitut-

ing contaminating clutter discretes. These contaminating

512 768 1024 1280 1536 1792 2048 2304 2560
-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. 4: The Proposed algorithm has identical SCNR

compared to the RCML-EL algorithm. SCNR for both

estimators is within the derived bounds.

-3 -2 -1 0 1 2 3
-1.5

-1.25

-1

-0.75

-0.5

Fig. 5: Algorithm 1 has identical SCNR compared to the

RCML-EL algorithm.

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

Fig. 6: Algorithm 1 has identical SCNR compared to the

RCML-EL algorithm.

clutter discretes do not share the same characteristics

as the target of interest so there is no self-target can-

cellation. Recall from Sec. III-D that the contaminating

clutter discretes change the clutter rank to an unknown r̂.

By introducing multiple targets as contaminating clutter

discretes we demonstrate the robustness of the detector.

The detection probabilities are the same for both the

RCML-EL algorithm and the proposed algorithm as the

detector uses only the eigenvectors of the sample covari-

ance matrix. The detection probabilities are illustrated in

Fig.7.

C. Empirical Error Variance

In this section, we empirically present the minimum

variance distortionless beamformer (MVDR) error vari-

ance due to the proposed algorithm with the error variance
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Fig. 7: As PFA is decreased, higher SNR is required to

get a fixed PD for a single target. The presence of other

targets is not affecting the detection probabilities as they

are projected into the null space of the target subspace.

This empirically shows that the detector is robust to the

presence of contaminating clutter discretes.

1000 1500 2000 2500 3000

0.5

1
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2

Fig. 8: The normalized error variance due to the proposed

algorithm and the RCML-EL algorithm is identical to that

of the true covariance matrix. We normalize error variance

in (33) by the error variance of the true covariance matrix.

of the beamformer of the RCML-EL algorithm and the

true covariance matrix. The error variance for the beam-

former is

Error Variance = 1/|sH M−1s| (33)

where M = R̄proposed for the proposed algorithm,

R̄RCML-EL for the RCML-EL algorithm and R for the

true covariance matrix, respectively. The target signal s,

as defined like yt in (10), has Doppler fd = 0.3 and

angle θ = 30◦. In Fig.8, the error variance for RCML-

EL and the proposed algorithm is identical to the true

covariance matrix. The error variance does not change as

the training data size is increased since we are working

in the asymptotic regime. This is due to the fact that in

the asymptotic regime, the estimated covariance matrix

converges to the true covariance matrix with probability

1. Hence, the error variance in (33) merely becomes the

reciprocal of the SNR from (10) when R̄ = R.

To conclude this section, we demonstrated that with

reduced covariance computation time, Algorithm 1 gives

identical SCNR performance compared to the EL-based

covariance estimation algorithm within the proposed

bounds. However, the noise computation step requires

some pre-computed values of the medians of Marchenko

Pastur distributions for various values of γ. This also

makes our algorithm less robust to a sudden change in

the parameters of the scenario as data samples can vary

depending on the range swath.

We demonstrated the target detection probabilities for

different false alarm probabilities using the LR-ANMF

detector. We empirically demonstrated the robustness with

respect to contaminating clutter discretes in the Challenge

Dataset. We empirically demonstrated that the error vari-

ance of the proposed algorithm is identical to the true

covariance matrix.

CONCLUSION

We exploited the spiked covariance structure for the

clutter plus noise covariance matrix in a high dimensional

setting and proposed a nonlinear shrinkage-based rotation

invariant estimator. We stated the convergence of the

spiked eigenvalues of the estimator. We demonstrated

the reduced covariance computation times compared to

the RCML-EL algorithm. Our proposed algorithm had

identical SCNR performance compared to the RCML-

EL algorithm. We employed the LR-ANMF detector for

robust target detection and empirically showed that the

error variance of the algorithm is identical to the true

covariance matrix.

Our proposed algorithm is a batch-wise algorithm. In

future work it is worthwhile developing an adaptive ver-

sion of the algorithm. We will also investigate other kinds

of loss functions for various scenarios by introducing

various constraints and deriving the concentration bounds

for the proposed algorithm. The number of contaminating

clutter discretes and their relative strength in the challenge

dataset is not sufficient to provide a comprehensive anal-

ysis of the robustness feature of the LR-ANMF detector.

This facet of the technique will be explored in more detail

in the future.

Appendix

In this section, we state the parameters we used for

the Challenge Dataset in Table II-IX.

Latitude 32.66 deg. N

Longitude 118 deg. W

Height 6000 m

Speed 100 m/s

Azimuth angle of velocity vector

(deg. w.r.t. true north)

0 deg

Elevation angle of velocity vector

(deg. w.r.t. horizon)

0 deg

TABLE II: Radar Platform Location
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Fig. 9: The Challenge Dataset scenario consists of 4
targets and 2 clutter discretes.

Number of Array Elements (Hor-

izontal Dimension)

32

Number of Array Elements (Ver-

tical Dimension)

5

Number of Horizontal Spatial

Channels (Receiver)

32

Number of Vertical Spatial Chan-

nels (Receiver)

1

Total Number of Spatial Channels

(Receiver)

32

Total Number of Channels (Trans-

mitter)

1

Transmit Antenna Gain 503.3509

Receive Antenna Gain 15.7297

Center Frequency 10 GHz

Array Inter-Element Spacing 0.015 m

Number of Coherent Processing

Intervals (CPI)

30

Number of Pulses per CPI 64

Pulse Repetition Frequency 1 KHz

Radar Waveform Standard LFM

Radar Waveform Bandwidth 10 MHz

Radar Waveform Duty Factor 0.1

Sampling Frequency 10000000

Peak Transmit Signal Power 1000 Watts

Number of Range Bins 2334

Size of Data Cubes (for each CPI) 32 x 64 x 2334

Range Swath Width 20000 m

Radar Azimuth Look Angle

(Fixed)

80.8321 deg

Radar Elevation Look Angle

(Fixed)

-5.1364 deg

Clutter Scene Size 20Km x 20Km

Clutter Patch Size 20m x 20m

TABLE III: Monostatic Radar Parameters for the Chal-

lenge Dataset scenario.
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