Abstract:
We present a missingness-aware fusion network (MAFN) to identify a person’s digital phenotype from continuously measured longitudinal multi-modal wearable data. This work...Show MoreMetadata
Abstract:
We present a missingness-aware fusion network (MAFN) to identify a person’s digital phenotype from continuously measured longitudinal multi-modal wearable data. This work is done as a part of Track 1 of e-Prevention: Person Identification and Relapse Detection from Continuous Recordings of Biosignals Signal Processing Grand Challenge at International Conference on Acoustics, Speech, & Signal Processing (ICASSP) 2023. MAFN achieves an accuracy of 91.36% on test data. Additionally, our experiments confirm findings from previous works that kinetic features derived from the accelerometer in-deed contain more discriminative features for person identification task.
Published in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 04-10 June 2023
Date Added to IEEE Xplore: 05 May 2023
ISBN Information: