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ABSTRACT
This paper focuses on multi-enrollment speaker recognition which
naturally occurs in the task of online speaker clustering, and studies
the properties of different scoring back-ends in this scenario. First,
we show that popular cosine scoring suffers from poor score cal-
ibration with a varying number of enrollment utterances. Second,
we propose a simple replacement for cosine scoring based on an ex-
tremely constrained version of probabilistic linear discriminant anal-
ysis (PLDA). The proposed model improves over the cosine scor-
ing for multi-enrollment recognition while keeping the same perfor-
mance in the case of one-to-one comparisons. Finally, we consider
an online speaker clustering task where each step naturally involves
multi-enrollment recognition. We propose an online clustering algo-
rithm allowing us to take benefits from the PLDA model such as the
ability to handle uncertainty and better score calibration. Our exper-
iments demonstrate the effectiveness of the proposed algorithm.

Index Terms— speaker verification, online speaker clustering

1. INTRODUCTION

In this paper, we consider a general scenario that we call online
speaker recognition, where speech segments arrive sequentially, and
the speaker recognition system has to identify previously encoun-
tered speakers and detect new speakers. At each time, there is a
history of previously processed segments and the current segment to
be classified.

One application scenario is household speaker recognition [1,2].
A household is a small set of family members whose speech data is
processed by a shared device such as a smart speaker (e.g. Amazon
Alexa). First, the device collects speech data from the users to create
their profiles (speaker models). Then, at each interaction with a per-
son, the device identifies the user and, optionally, updates (enriches)
the corresponding speaker model. The device continuously collects
the data of the users to improve its performance by estimating more
accurate speaker representations. Also, the recorded speech utter-
ances may belong to unregistered speakers (e.g. guests) leading to
an open-set identification task. Another related task is low-latency
speaker spotting [3], where a previously registered target speaker has
to be detected in an audio stream.

Another example is online speaker diarization or clustering [4–
9]. In this case, short speech segments from an audio stream have to
be classified with low latency (e.g. 1-2 seconds). Unlike household
speaker recognition, where all unregistered speakers are not of inter-
est, in the speaker clustering task, there are no speakers registered

∗Equal contribution.

beforehand, and a new speaker model has to be created for each pre-
viously unseen speaker. In the following, we focus on the online
speaker clustering task since it is more general, and online speaker
recognition can be seen as a special case.

What these scenarios have in common is that speech segments
are received sequentially in nature and have to be classified on
arrival. Specifically, an open-set identification problem has to be
solved for each new segment. That is, the current segment has
to be assigned to either one of the known speakers or a new (un-
known) speaker. As a result, the number of segments per speaker
continuously increases over time. This requires some way to ag-
gregate information from multiple segments to form a memory-
efficient speaker representation. This is usually referred to as multi-
enrollment (or multi-session) speaker recognition [10–13], that is,
when a speaker is represented by multiple speech segments. More-
over, different speakers may be represented by different numbers of
segments. As shown in [11], this can be a major complicating factor
for speaker recognition, since it causes inconsistency in scores from
different speaker models. To our best knowledge, this issue has not
been studied for modern large-margin speaker embeddings.

Inspired by [11,14], this work focuses on the issues arising from
multi-enrollment scoring since it is a core element of online speaker
recognition and clustering. We show that popular cosine scoring
could have undesirable properties when used for multi-enrollment
verification. Then we show that a highly constrained version of
PLDA can be a suitable alternative while having better performance
and comparable computational complexity. Specifically, we propose
a PLDA model with spherical between- and within-covariance ma-
trices as a replacement for cosine scoring back-end. While being
equivalent to cosine scoring in a special case, this model can nat-
urally handle varying degrees of uncertainty specific to the multi-
enrollment scenario.

Further, we propose a probabilistic back-end for online speaker
recognition and clustering. It is based on the spherical PLDA model
and therefore has several appealing properties compared to cosine
scoring. It employs an incremental (online) variant of variational
Bayesian inference and provides probabilistic soft decisions for each
input observation, based on the history of preceding observations.

Our contributions are summarized as follows:

• We compare scoring back-ends for multi-enrollment verifica-
tion for modern large-margin embeddings.

• We propose a simple alternative to cosine scoring suitable for
multi-enrollment verification.

• We propose a probabilistic back-end for online speaker recog-
nition and clustering.
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2. BACKGROUND

2.1. PLDA

General formulation. In this study we focus on a variant of PLDA
known as the two-covariance model [15]. Let xi,j ∈ Rd denote
the jth speaker embedding of speaker i. Also, let yi be the latent
speaker identity of speaker i. Then, the model is specified by two
Gaussian distributions:

p(yi) = N (yi|µ,B), p(xi,j |yi) = N (xi,j |yi,W). (1)

Here, µ is a global mean, and B,W ∈ Rd×d are the between- and
within -speaker covariance matrices, respectively.

Being a linear Gaussian model, PLDA allows making inferences
about speaker identities in closed form. Given a set of observations
(embeddings), one can compare different hypotheses about the par-
tition of this set by computing the corresponding hypothesis likeli-
hoods. This is often referred to as by-the-book scoring in the litera-
ture [10, 16].

PLDA with spherical covariances. Despite being a gold
standard for previously popular i-vectors [17], one could recently
observe a gradual shift towards replacing PLDA with a simpler
parameter-less cosine scoring back-end [18]. As discussed in [14],
the high intra-speaker compactness of the large-margin embed-
ding makes the conventional full-rank PLDA model superfluous.
It was also observed in [14] that discarding off-diagonal elements
in the within-speaker covariance matrix can bring considerable
performance gain. Here, we analyze a much more constrained
version of the PLDA model, to our knowledge, firstly proposed
in [1, 19]. Specifically, we consider PLDA with spherical covari-
ances, B = σ2

BI, W = σ2
WI, where σ2

B and σ2
W are between- and

within-speaker variances and I denotes an identity matrix. In the
following text, we will refer to this model as the spherical PLDA.

Relationship with cosine scoring. As was shown in [18], for
length-normalized and centered embeddings, the verification like-
lihood ratio of the spherical PLDA can be written as a scaled and
shifted cosine similarity measure. Since an affine transformation of
scores is order-preserving, the two scoring rules are equivalent. This
brings up a question about the usefulness of spherical PLDA. As we
discuss further, spherical PLDA has several advantages over cosine
scoring. For instance, we show that the PLDA by-the-book scor-
ing outperforms different cosine based heuristic scoring methods in
multi-enrollment verification.

Relationship with PSDA. Another closely related scoring back-
end is the so-called probabilistic spherical discriminant analysis
(PSDA) recently proposed in [20]. It can be viewed as PLDA
model with Gaussian distributions replaced by von Mises-Fisher
(VMF) distributions that are defined on the d − 1 dimensional unit
hypersphere Sd−1 [21]:

p(yi) = V(yi|µ, b), p(xi,j |yi) = V(xi,j |yi, w). (2)

Here, V(y|µ, κ) denotes the density of the VMF distribution with
mean direction vector µ ∈ Sd−1 and scalar concentration κ ≥ 0
parameter. Similar to spherical PLDA, this model is parameterized
by the mean direction vector µ and two scalars: between-speaker, b,
and within-speaker, w, concentrations.

The relation to spherical PLDA follows from the fact that re-
stricting any isotropic Gaussian density to the unit hypersphere gives
a VMF density, up to normalization. However, the two models are
not equivalent, though their behavior is very similar as we show in
the experiments.

We use both spherical PLDA and PSDA as a basis for a proposed
online speaker clustering algorithm described in Section 3.

2.2. Multi-enrollment verification

When available, multiple enrollment utterances may represent vari-
ous acoustic environments, or channels, that could be useful to better
disentangle speaker identity from other irrelevant factors.

The study in [10] analyzes different methods of aggregating in-
formation from multiple speech segments for the PLDA scoring.
Among them were embedding averaging, score averaging, and by-
the-book scoring. Their experiments with i-vectors revealed that
embedding averaging systematically outperforms other methods, in-
cluding by-the-book scoring.

However, these observations were made for previously popular
i-vector embeddings and have not been yet confirmed for modern
large-margin embeddings. In fact, in our experiments, we observe
that by-the-book scoring with spherical PLDA or PSDA outperforms
embedding averaging.

3. ONLINE PROBABILISTIC SPEAKER CLUSTERING

In this section, we describe the proposed back-end model for online
speaker recognition and clustering. The difference between offline
(batch) and online settings is that in the former case all the data to be
processed is available at once, while in the latter case pieces of data
are observed sequentially, in some order.

3.1. Online clustering
The general pattern behind many online clustering algorithms is
solving a series of successive open-set identification tasks [3,4,6,22].
The basic idea is to compare each new observation to the existing
clusters, and either alter the closest cluster or create a new cluster.
The generic Algorithm 1 demonstrates this for a single time step t.

Algorithm 1 Online clustering (time step t)

si ← score(xt,Xi) . Compare xt to the existing clusters
k ← argmaxi si . Find the most similar cluster
if sk ≥ τ then . If the maximal score sk is above the threshold τ

Xk ← {Xk,xt} . Add xt to the k-th cluster
else

XK+1 ← {xt} . Create a new cluster
K ← K + 1 . Increment the total number of clusters

end if
First, the observation xt is compared to all existing clusters,

each represented by a set of observations, Xi. If similarity to the
closest cluster is above the threshold, τ , then xt is assigned to this
cluster. Otherwise, a new cluster is formed.

In this algorithm, clusters are represented by subsets of obser-
vations sharing the same label. Therefore, computing similarity to a
cluster involves many-to-one comparison, also referred to as multi-
enrollment verification in the context of speaker recognition. As
discussed in [11], varying cluster sizes may result in miscalibrated
scores leading to sub-optimal decisions with a fixed threshold τ .

We aim at addressing this issue and propose an algorithm suit-
able for online clustering. Specifically, the underlying scoring model
should be robust to varying cluster sizes naturally occurring in the
online scenario. The proposed algorithm can be seen as a probabilis-
tic extension of the Algorithm 1 constructed upon PLDA or PSDA
models. As a result, it benefits from the advantages of PLDA (or
PSDA) for multi-enrollment verification.

3.2. Model-based clustering

We start with a brief description of a generative model-based clus-
tering [23, 24].



Model-based clustering builds upon a generative model that
specifies how a set of data points X = {x1, ...,xN} is generated
from the hidden parameters of K clusters Y = {y1, ...,yK}, given
the cluster assignments Z = {z1, ..., zN}. A typical clustering
model is given by the following joint distribution: p(X,Y,Z) =
p(X|Z,Y)p(Y)p(Z).

The clustering problem requires finding the most likely parti-
tion of the data Z∗ = argmaxZ p(Z|X). Our approach is based
on the “mean-field” variational Bayesian approximation [25, 26] as-
suming that the approximate posterior factorizes as p(Z,Y|X) ≈
q(Z)q(Y). This assumption leads the algorithm consisting of itera-
tive updates of the factors q(Z) and q(Y).

However, such updates are designed for the conventional clus-
tering setup, where all observations are available at once. We modify
the standard inference algorithm to make it suitable for online clus-
tering, where observations arrive sequentially. This algorithm can
be seen as an online version of the VBx [27] with simplified prior
on assignments p(Z). It is also similar to the algorithm from [7],
where the authors modified the offline variational inference to make
it suitable for online processing.

3.3. The proposed algorithm

Let us denote the current observation at the time step t as xt, and use
the notation X1:t = {x1, ...,xt} to denote causal observations.

The algorithm updates posterior distributions of latent identity
variables q(yk) ≈ p(yk|X1:t) after receiving a new observation xt.
In general, several update iterations can be done. Our experiments
reveal that even a single update can be sufficient for reasonable per-
formance. In this case only posterior for the current data point q(zt)
needs to be computed, followed by updating each of q(yk):

q(zt) ∝ exp

K∑
k=1

zt,k
[
Eq(yk)

[log p(xt|yk)] + log πk
]︸ ︷︷ ︸

log γt,k

, (3)

q(yk) ∝ exp [γt,k log p(xt|yk) + log q(yk|X1:t−1)] . (4)

Here, γt,k is the k-th component of the vector of posterior probabili-
ties q(zt) over the cluster assignments and πk are the corresponding
prior probabilities.

This algorithm continuously updates speaker models defined by
q(yk). Also, one can obtain speaker labels at each time step t by
finding argmaxk γt,k. For instance, if γt,k = 0, then the posterior
q(yk) stays unchanged. In general, if the soft-assignments γt were
converted into hard decisions, then updating q(yk) would be nothing
more than the sequential application of the Bayes formula. Also,
the algorithm would become very similar to a sequence of multi-
enrollment recognition tasks, where predictions are obtained via by-
the-book scoring.

These update equations can be used to construct different on-
line recognition and clustering algorithms depending on a particular
choice of the underlying generative model defined by p(x|y) and
p(y). In this study, we use two models: spherical PLDA and PSDA.
Table 1 demonstrates the update equations for both models.

PLDA: q(y) = N (y|mt,St) PSDA: q(y) = V(y|mt, rt)

Λt = γtW
−1 + Λt−1

ηt = γtW
−1xt + ηt−1

St = Λ−1
t , S0 = B

mt = Stηt, m0 = µ

ηt = wγtxt + ηt−1

rt = ‖ηt‖, r0 = b
mt = ηt / rt, m0 = µ

Table 1: Update equations for the full-rank PLDA (1) and PSDA (2)
at the time step t. The speaker index is omitted for clarity.

To detect new speakers we introduce an extra class correspond-
ing to an unknown speaker. For this class, the posterior for the
speaker identity variable is equal to the prior.

Algorithm 2 outlines the time step t of the proposed algorithms.

Algorithm 2 Proposed algorithm (time step t)

γt ≡ q(zt)← Eq. (3) . Cluster membership probabilities
q(yk)← Table 1 . Update clusters
k ← argmaxi γt,i . Find the most probable cluster
if k = K + 1 then . New class is detected

K ← K + 1 . Increment the total number of clusters
end if

The advantage of the proposed algorithm over Algorithm 1 is
that it uses soft decisions for updating clusters. This makes the algo-
rithm more robust to classification errors.

As a baseline for our experiments, we use Algorithm 1 with co-
sine similarity scoring.

4. EXPERIMENTS

In this section, we analyze the performance of several back-end scor-
ing models in the multi-enrollment scenario. First, we report results
for a rarely investigated speaker verification scenario, i.e., where the
number of enrollment and test segments varies within an evaluation
protocol. Next, we apply the proposed Algorithm 2 for the online
speaker diarization task. To support reproducible research, we make
the code and evaluation protocols publicly available.

We used open-source speaker embedding extractors in order
to make our experiments reproducible. We decided to stick to
the following systems: SpeechBrain [28], BUT model [27], and
CLOVA [29]. Due to space limitations, we report results only for
SpeechBrain, while other results can be found at the project reposi-
tory1.

4.1. Multi-enrollment verification

In this section, we compare different scoring back-ends in multi-
enrollment speaker verification scenario. Specifically, we investigate
calibration properties of the verification scores in the case where the
number of enrollment and test segment varies within an evaluation
protocol.

Experimental setup. We created several custom evaluation pro-
tocols from the VoxCeleb1 test set [30]. Specifically, we generated
four trial lists with configurations (1, 1), (3, 1), (10, 1), and (3, 3),
where the notation (#enrollments, #tests) represents the number of
enrollment or test segments in a single trial. In addition, we com-
bined all the trial lists to get the pooled protocol. The idea behind
it is to reveal the robustness of scoring back-ends to the number of
enrollment segments. To exclude the effect of utterance duration, the
recordings were cropped to 2 seconds before extracting embeddings.

We compared several different scoring variants: cosine similar-
ity with embedding averaging (CSEA) or score averaging (CSSA),
PSDA [20], and three versions of PLDA with spherical, diagonal,
and full covariance matrices. For PLDA and PSDA by-the-book
scoring was used. The VoxCeleb1 dev set [30] was used for train-
ing the back-ends. We used two performance metrics: the equal er-
ror rate (EER) and the minimum normalized detection cost function
(minDCF) with Ptarget = 0.01 [31].

Results. Figure 1 demonstrates the distribution of verification
scores for different numbers of enrollment segments. One can see

1https://github.com/sholokhovalexey/
online-speaker-clustering

https://github.com/sholokhovalexey/online-speaker-clustering
https://github.com/sholokhovalexey/online-speaker-clustering
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Fig. 1: Distributions of target and impostor scores for different num-
bers of enrollment segments: 1, 3, and 10. Short black vertical lines
represent EER thresholds.

considerable distribution shifts for the target scores computed with
CSEA. To be precise, a large variation of EER thresholds clearly
makes each one sub-optimal for the other protocols. In contrast, the
EER thresholds seem to be more stable for other scoring back-ends,
even despite large differences in distribution means and variances
for PLDA and PSDA. These observations are supported by objec-
tive metrics presented in Table 2. Despite low EERs for each pro-

Back-end Evaluation protocol
(1, 1) (3, 1) (10, 1) (3, 3) pooled

CSEA 4.98 1.65 0.83 0.17 2.85 / 0.206
CSSA 4.98 1.79 1.02 0.37 2.05 / 0.228
PSDA 4.85 1.55 0.78 0.13 2.08 / 0.172
sph-PLDA 4.98 1.59 0.78 0.14 1.99 / 0.170
diag-PLDA 4.95 1.62 0.78 0.13 1.98 / 0.169
full-PLDA 4.74 1.79 1.08 0.20 2.06 / 0.201

Table 2: Comparison of the speaker verification performance for
different scoring back-ends in terms of EER, %. The last column
shows minDCF as well. SpeechBrain embeddings were used.
tocol individually, the performance of CSEA degrades significantly
on the pooled protocol. In contrast, CSSA does not suffer from this
problem, however, it has higher error rates on the other protocols.
Finally, PLDA and PSDA perform the best, overall, handling well
all the cases. They also have very similar metrics and distributions
of scores. These results are also in line with findings in [1] where
spherical PLDA outperformed cosine similarity in the household
speaker recognition task. Note that CSEA, CSSA, and sph-PLDA
have exactly the same metrics in the (1, 1) protocol because sph-
PLDA is equivalent to cosine scoring. Another observation is that
models with more parameters, diag- and full-PLDA, have compara-
ble performance to sph-PLDA. This motivates choosing sph-PLDA
as a simpler and faster alternative.

It should be noted that, unlike this study, PLDA model stud-
ied in [11] was not robust to the number of enrollment utterances.
This probably can be explained by the nature of i-vector distribution
which is different from the distribution of large-margin embeddings.

4.2. Online speaker diarization

In this section, we describe experiments on online speaker diariza-
tion. We used the same PLDA and PSDA models as for the previous
experiments.

Experimental setup. We used two popular datasets of multi-
speaker recordings: AMI [32], and VoxConverse [33]. Again, due to
space limitations, we report only the results for the first one, while
similar observations were made for the VoxConverse.

We used the development/evaluation split for the AMI corpus
from [27]2. The development set was used for tuning the hyper-

2https://github.com/BUTSpeechFIT/AMI-diarization-setup

parameters of the back-end models, pretrained on the VoxCeleb data.
For AMI, the evaluation was performed on Mix-Headset chan-

nel. We extracted embeddings from segments of length 2.0 sec with
1.0 sec overlap within the boundaries obtained by the ground-truth
annotation. These embeddings were sequentially processed by sev-
eral online clustering algorithms, producing the output annotation.
We did not use any special heuristics for handling segments with
overlapped speakers, thus one speaker was assigned to each segment.

We compared three versions of Algorithm 1: with CSEA, CSSA,
and PLDA scoring. Also, we evaluated two versions of the proposed
Algorithm 2, with sph-PLDA and PSDA models. All of the algo-
rithms have at least one hyper-parameter (e.g. decision threshold)
that was tuned on the development split.

Results. For the evaluation metrics, we use the diarization er-
ror rate (DER) [34] and Jaccard error rate (JER) [35]. The forgive-
ness collar was set to 0.25, and overlapped speech regions were ex-
cluded from evaluation for DER, however, JER is calculated with
no forgiveness collar and includes overlapped speech [35]. Table
3 provides the evaluation results. Unlike the previous experiment

Clustering back-end DER, % JER, %
Algorithm 1 w/ CSEA 3.63 25.20
Algorithm 1 w/ CSSA 3.67 26.33
Algorithm 1 w/ sph-PLDA 6.58 27.49
Algorithm 2 w/ PSDA 3.34 24.47
Algorithm 2 w/ sph-PLDA 3.32 25.21

Table 3: Online speaker diarization with SpeechBrain embeddings.
on speaker verification, we found that sequential PLDA scoring per-
forms worse than cosine. As was discussed in [36] and [37], this
probably can be explained by an inadequate assumption of statis-
tical independence of the enrollment segments, which affects the
score calibration. According to the theoretical model, enrollment
segments are independent draws from the within-speaker distribu-
tion, while in diarization it is clearly not the case because of a shared
acoustic environment and recording channel. However, unlike i-
vector embeddings considered in [10,36], this effect seems to be less
evident for large-margin embeddings. Apparently, PLDA suffers
from this effect only in diarization, while yielding adequate score
calibration when embeddings are less statistically dependent, as in
our previous experiment.

At the same time, the proposed clustering algorithm which uses
the same PLDA model delivers lower error rates than Algorithm 1.
In the future, we plan to further investigate the properties of this al-
gorithm in other applications such as household speaker recognition,
where speech utterances are also processed sequentially.

5. CONCLUSION

This paper studies the properties of popular scoring back-ends suit-
able for large-margin speaker embeddings, with a particular focus
on multi-enrollment speaker verification. Our experiments with the
state-of-the-art embeddings revealed shortcomings of cosine scor-
ing in the multi-enrollment scenario. To address this, we advocate
for using the spherical PLDA that has several attractive properties:
absence of numerical instabilities specific to PSDA due to Bessel
functions; better performance, comparable computational complex-
ity, and equivalence to cosine scoring in a special case. Also, we
introduced a simple online clustering algorithm that uses the advan-
tages of PLDA and PSDA for the multi-enrollment scenario. Em-
pirical evaluation of the online speaker diarization showed superior
performance of the proposed algorithm.

https://github.com/BUTSpeechFIT/AMI-diarization-setup
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