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ABSTRACT

Test-time adaptive (TTA) semantic segmentation adapts a source
pre-trained image semantic segmentation model to unlabeled batches
of target domain test images, different from real-world, where sam-
ples arrive one-by-one in an online fashion. To tackle online settings,
we propose TransAdapt, a framework that uses transformer and input
transformations to improve segmentation performance. Specifically,
we pre-train a transformer-based module on a segmentation network
that transforms unsupervised segmentation output to a more reliable
supervised output, without requiring test-time online training. To
also facilitate test-time adaptation, we propose an unsupervised loss
based on the transformed input that enforces the model to be in-
variant and equivariant to photometric and geometric perturbations,
respectively. Overall, our framework produces higher quality seg-
mentation masks with up to 17.6% and 2.8% mIOU improvement
over no-adaptation and competitive baselines, respectively.

Index Terms— Test Time Adaptation, Online Learning, Trans-
former, Consistency, Semantic Segmentation

1. INTRODUCTION

Deep learning systems produce highly accurate predictions when
tested on data similar to the training data. However, when there is a
distribution shift between training and test data, the performance of
deep learning systems can be significantly impacted. In particular,
previous work in semantic segmentation, which is a key computer
vision task for various applications like self-driving and AR/VR, has
often seen such performance degradation caused by domain gaps.
More specifically, researchers and practitioners often utilize syn-
thetic data [1, 2] to train semantic segmentation models, since ob-
taining ground-truth annotations on real images is very costly. How-
ever, such trained models usually perform poorly on real images due
to the drastic visual difference between synthetic and real data.

In order to reduce the gap, researchers have proposed various do-
main adaptation approaches that include self-training with pseudo-
labels [3, 4, 5, 6, 7, 8, 9], adversarial feature alignment [10, 11, 12],
input style transfer [13, 14, 15, 16, 17, 18, 19], or conditioning of
segmentation outputs [20, 9, 21]. Under the assumption that a large
number of unlabeled images are available from the target/test do-
main, one can finetune the pretrained semantic segmentation model
on both the unlabeled test-domain data (via an unsupervised loss)
as well as the labeled source-domain data. This produces a domain-
invariant model, which can produce more accurate predictions on the
target domain as compared to the pretrained model.

*Qualcomm AI Research is an initiative of Qualcomm Technologies,
Inc.

There exists source-free domain adaptation methods [22, 23, 24,
25, 26] that assume absence of source domain data during adapta-
tion. However, these methods can lead to improved segmentation
performance on common evaluation benchmarks due to adaptation
on large target data batches, which can overestimate segmentation
performance. Specifically, in many real-world deployments, prior
access to a set of unlabeled target-domain data will not be available
for performing offline model updates. On the contrary, the target-
domain data samples often arrive on-the-fly. Most existing domain
adaptation methods can not be used in this online setting, since gra-
dient updates based on single images will be noisy and degrade the
model’s stability and accuracy.

In this paper, we formally introduce online test-time adaptive se-
mantic segmentation, where we adapt a pre-trained model on online
test image sequences without accessing source domain data. On this
task, we construct three cross-dataset benchmarks by evaluating ex-
isting domain adaptation methods to establish several baselines. In
addition to establishing baselines, we propose a novel framework,
namely TransAdapt, for conducting online test-time adaptation of
semantic segmentation models. In TransAdapt, we first pretrain the
semantic segmentation model with both supervised and unsuper-
vised loss functions, where the final supervised segmentation pre-
dictions are mapped from the unsupervised predictions. Specifically,
given a segmentation prediction head that is trained with an unsuper-
vised loss, we leverage a transformer module to convert the unsuper-
vised predictions to the final predictions via a linear mapping. Dur-
ing test, only the unsupervised head receives training signals to up-
date the model without incurring costly updates on the transformer.
The transformer module leverages global context within features to
generate the unsupervised-to-supervised mapping and also empir-
ically produces better recognition performance compared to non-
transformer variants.

During online test-time adaptation, we propose to use transfor-
mation consistency (TC) as the unsupervised loss for updating the
model. By utilizing TC, we avoid relying on noisy and inaccurate
pseudo-labels of target domain images. Specifically, we consider
two types of transformation: (a) photometric transformations which
enforce model invariance to non-essential visual appearance changes
and (b) geometric transformations which enforce the model’s predic-
tion to be equivariant to the input, w.r.t. certain geometric transfor-
mations. Using our transformer based pre-training and/or transfor-
mation consistency based adaptation, we produced improved seg-
mentation on the three cross-dataset benchmarks. Our main contri-
butions are summarized as follows:

• We propose a plug-and-play transformer module on top of a
segmentation network that produces supervised segmentation
outputs from unsupervised ones, thus allowing generalization
without requiring adaptation.
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Fig. 1: The feature extractor, prediction head, transformer module and other learnable parameters are pre-trained using a combination of
supervised and unsupervised losses. During test time, the unsupervised loss is used to conduct adaptation. Once the adaptation is done, we
use the output from the prediction head and multiply it with the transfer matrix to produce the supervised output to for inference.

• We devise a test-time adaptation loss using photometric and
geometric transformation consistency.

• Finally, we evaluate the effectiveness of our framework
against existing but compatible unsupervised and adaptive
baselines and establish three cross-dataset benchmarks to
facilitate future research.

2. PROPOSED FRAMEWORK

2.1. Task Description

We consider the availability of labeled source domain data X src =
{(xsrci , ysrci )}Nsrc

i=1 with input images xsrci ∈ RH×W×3 and their
segmentation maps ysrci ∈ RH×W×L. Here, H and W are the
height and width of the input image and L is the number of class
labels. This labeled source domain data is used to pre-train a model.
For online test-time adaptation, we need to adapt the model to a se-
quence of unlabeled images X tgt = {(xtgti )}Ntgt

i=1 from the target
domain with the same set of classes as the source domain. It is to
be noted that the sequence of images are not necessarily adjacent
frames of a video. Also, the model can be decomposed into a fea-
ture extractor F , a prediction head Hp and optionally our proposed
transformer module Tf .

2.2. Pre-training with Transformer Module

We use the transformer module to find the relationship between su-
pervised and unsupervised semantic segmentation maps as described
in Fig. 1. Specifically, consider an input image xi ∈ RH×W×3,
which produces a feature map fi ∈ RH′×W ′×C such that fi =
F (xi). This feature map when passed through a prediction head,
produces output logits oi ∈ RH×W×L such that oi = Hp(fi). A
softmax operation is applied on these logits to obtain a segmenta-
tion probability map pi ∈ RH×W×L. For end-to-end training of F
and Hp, we can use cross entropy loss LXEnt(pi, yi) between the
predicted probability maps pi and ground truth segmentation labels
yi.

In our proposed framework, we aim to learn the relationship be-
tween supervised and unsupervised predictions which would facili-
tate test-time adaptation from unlabeled image sequences. Here, we
use the output from the prediction head as unsupervised logit oui .

The feature map fi is then used as conditioning input for a trans-
former decoder module to construct the keys and the values. The
transformer decoder uses learnable queries qs ∈ RL×C which are C
dimensional vector representations of L categories to be identified
for the supervised output. To generate keys and values, the patches
are obtained from the feature map fi which are then flattened to pro-
duce n tokens ti ∈ Rn×C . These tokens are then fed into the multi-
head attention stage of the transformer decoder followed by a feed
forward network. To understand the multi-head attention scheme,
we first mention the single-head attention mechanism which is as fol-
lows: q = qsW q, ki = tiW

k, vi = tiW
v where W q,W k,W v ∈

RC×C are weight matrices to produce linear representations of the
raw tokens. These processed tokens are then used to produce the at-
tention operation Att(·) such that Att(q, ti, ti) = Softmax(qkTi )vi.
For the multi-head attention operation MHAtt(·) having M heads,
qs and ti are split intoM parts qs

1, . . . , q
s
M and ti,1, . . . , ti,M , where

dimension of each split is C′ = C/M . Attention operation is ap-
plied over all such splits to produce

q̃s
i = [Att1(qs

1, ti,1, ti,1); . . . ;AttM (qs
M , ti,M , ti,M )] (1)

MHAtt (q, ti, ti) = LN (qs +DO(q̃s
iW )) (2)

where LN is layer normalization [27], DO is the dropout opera-
tion [28] and W ∈ RC×C is a linear mapping. The output of
the multi-head attention mechanism is passed through a two layer
feed-forward network where each layer consists of a linear mapping
followed by dropout, residual connection and layer normalization
similar to Eq. 2. Alternating multi-head attention and feed-forward
networks can produce multiple layers of the transformer decoder.
The output of the transformer decoder will produce a representation
qo
i ∈ RL×C for the transformer decoder input qs. qo

i thus consists
of C-dimensional vector representation of each of the L classes con-
ditioned on the feature map of the input image. This representation
needs to be mapped to a L-dimensional space for it to produce a
L×L weight matrix that relates supervised and unsupervised logits.
Hence, we apply the following operations

W s
u = Softmax (qo

iU) , osi = ouiW
sT
u . (3)

Here, U ∈ RC×L is a projection layer,W s
u is the transfer matrix and

osi are the supervised output logits. Softmax is then applied to these
logits to obtain the segmentation probability map psi ∈ RH×W×L.



For end-to-end training of the whole model, we can use cross entropy
loss LXEnt(p

s
i , yi) between the predicted probability maps psi and

ground truth segmentation labels yi. For training the model using
unsupervised logits oui , we can use an unsupervised lossLUSup(o

u
i ).

This unsupervised loss can possibly be one of the losses used for
test-time adaptation such as min-entropy [22], max-squares [29] or
our proposed transformation consistency loss. We can thus train the
whole network using the total loss

LTot(xi, yi) = LXEnt(p
s
i , yi) + λLUSup(o

u
i ) (4)

By minimizing this training loss with the source domain data, we can
learn the mapping between unsupervised and supervised segmenta-
tion predictions. During online test-time adaptation over a sample x,
the transformer module is kept frozen and we use the output ou of the
unsupervised head for obtaining the unsupervised loss LTTA(o

u) to
be used for updating the model parameters. After adaptation is com-
plete, we use the supervised head outputs os for evaluation purposes.
In the next sub-section, we explain our proposed transformation con-
sistency loss as an unsupervised loss for test-time adaptation.

2.3. Adaptation with Transformation Consistency

To resolve erroneous updates due to noisy pseudo-labels of single
images, we apply transformation consistency as a loss for online
test-time adaptation using invariance and equivariance property of
different transformation types. We use two transformation types -
photometric (grayscale, jitter, blur) and geometric (cropping, rota-
tions, shuffling), for invariance and equivariance respectively.

Specifically, let’s consider a test image x and a sampled photo-
metric transformationAp(·). When this transformation is applied on
a test image, it will produce a transformed image x̃ = Ap(x). For
both the original input image x and its transformation x̃, we produce
unsupervised output logits ou = Hp(F (x)) and õu = Hp(F (x̃))
respectively. To minimize the difference between ou and õu, we can
use discrepancy loss term Lp(o

u, õu). Possible discrepancies are
L1 or L2 distances. Specifically, let’s also consider a sampled ge-
ometric transformation Ag(·). When the geometric transformation
is applied on the test image, it will produce a transformed image
x̂ = Ag(x). For both the original input image x and its transfor-
mation x̂, we produce unsupervised output logits ou = Hp(F (x))
and ôu = Hp(F (x̂)) respectively. To enforce equivariance, we min-
imize the difference between ôu and the transformed logits Ag(o

u)
by using a discrepancy loss term Lg(Ag(o

u), ôu). The discrepancy
will be the same as used for photometric transformation consistency
loss. For adapting the model on the test sample x, we use both pho-
tometric and geometric transformation consistency losses as follows

LTTA(x) = Lp(o
u, õu) + Lg(Ag(o

u), ôu) (5)

Once the model is adapted using LTTA(x), we infer the output pre-
dictions with the supervised head using Eq. 3. We reiterate that dur-
ing test-time adaptation, the back-propagated gradients through the
unsupervised head do not affect the transformer module and hence
it remains frozen throughout. When the transformer module is not
used, the model has a single head. ou and subsequently LTTA(x)
is processed through the single head for adaptation, and inference is
carried out through that single head only. We summarize our pre-
training and adaptation step in Algorithm 1.

Algorithm 1: TransAdapt framework

Given: Source dataset X src = {(xsrci , ysrci )}Nsrc
i=1 &

Target dataset sequence X tgt = {(xtgti )}Ntgt

i=1

Step 1: Pre-train model on X src

For each sample (xsrci , ysrci ) from sampled batch of X src

Gradient update of Eq. 4 w.r.t. F , Hp, Tf , U , qs, W q,v,k

Step 2: Adaptation and Evaluation on X tgt

For each sample xtgti from X tgt

Gradient update of Eq. 5 w.r.t F and Hp

Predict segmentation map of xtgti using Eq. 3

3. EXPERIMENTAL RESULTS

3.1. Experiment Details

We evaluate our framework using three cross-dataset settings as
in [29]: GTA5 (Synthetic) [1] → Cityscapes (Real) [30], SYN-
THIA (Synthetic) [2] → Cityscapes and Cityscapes → Cross-City
(Real) [5] using online adaptation on test-set instead of offline adap-
tation. For all evaluation metrics, we use mean Intersection-over-
Union (mIoU). For the segmentation model, we use DeepLab-V2
ResNet-101 [29] trained on each of the source datasets. For our
proposed transformer module, we use a 1-layer decoder without
positional encoding, and output of block 3 of ResNet is used for
the input of of the transformer module. This transformer module is
trained with the segmentation network together by the loss defined
in Eq. 4. Unless explicitly mentioned, we set λ = 0.1 and max
squares [29] as the unsupervised loss. For the transformation consis-
tency loss in Eq. 5, L2 distance is used as the default metric for both
Lp(·) and Lg(·). For the adaptation, we use SGD with learning rate
of 1e− 4 and update only batch-norm parameters for only1 iteration
per sample as more updates cause performance degradation.

3.2. Comparison Studies

We compare against some popular domain adaptive methods [22,
29, 31, 32] and unsupervised segmentation methods [33, 34]. We
also compare against recently proposed online adaptive methods:
AuxAdapt [35] , Batch Norm update [36], Style Transfer vari-
ants [37], of which the latter two have been used in the OASIS [38]
benchmark. We further evaluate against two proposed baselines:
(a) Selective Cross Entropy: we apply cross-entropy loss on only
those pixels whose confidence score is greater than 0.8. (b) Special
Cross Entropy: We use the original test image and its photometric
transformed image and apply weighted cross entropy loss where the
weight depends on agreement of predictions from both the images.

Table 1 shows that for all cross-dataset setups, our proposed
transformation consistency method achieves mostly better perfor-
mance compared to other methods. Interestingly, using the trans-
former block, we observe mIoU improvement even without adap-
tation. When we apply our consistency method to the model with
the transformer block, there is further mIoU improvement. Fig-
ure 2 illustrates visualization of predicted segmentation masks. Our
proposed transformer module improves performance in case of no
adaptation and our proposed transformation consistency method is
better than other adaptation techniques. In Fig. 2, we highlight that
the unsupervised segmentation map produces more errors compared
to the supervised segmentation map. Furthermore, presence of non-
zero values on off-diagonal elements of the transfer matrix W s

u sug-
gests that supervised prediction is related through a combination of
different unsupervised predicted categories.



Table 1: Results for GTA5 (GTA)-to-Cityscapes (CS), SYN-
THIA (SYN)-to-Cityscapes (CS) and Cityscapes (CS)-to-CrossCity
(Rome, Rio, Tokyo, Taipei) experiments.

Source Dataset→ Target Dataset

Method Backbone G
TA
→

C
S

SY
N
→

C
S

C
S
→

R
om

e

C
S
→

R
io

C
S
→

To
ky

o

C
S
→

Ta
ip

ei

No Adaptation 33.68 28.66 50.19 48.91 47.78 45.30
Min Entropy [22] 36.20 31.77 50.74 49.79 48.11 45.59
Max Squares [29] 37.24 31.38 50.73 49.72 48.00 45.56
Focal Entropy [31] 33.78 28.85 50.6 49.48 47.90 45.50
Sel. Cross Entropy 37.28 30.60 50.62 49.49 47.91 45.50
S4T [32] DeepLab-V2 35.66 30.89 50.51 49.43 47.87 45.47
Spec Cross Entropy RN-101 36.22 28.97 50.63 49.49 47.91 45.50
Super Pixel [33] 36.31 31.87 50.60 49.56 47.91 45.52
Spatial Cont. [34] 36.81 32.53 50.55 49.40 47.88 45.65
AuxAdapt [35] 36.63 28.74 50.30 49.74 48.13 46.38
Style Transfer Rand [37, 38] 35.74 33.34 47.20 46.49 45.54 43.13
Batch Norm [36] 33.68 28.66 50.20 48.92 47.78 45.30
Trans. Cons. (Ours) 37.83 33.72 50.82 50.43 48.20 45.88
No Adaptation 35.61 31.25 51.14 49.01 47.48 47.45
Min Entropy [22] DeepLab-V2 36.82 31.53 51.61 49.35 47.64 47.58
Max Squares [29] RN-101 36.59 31.67 51.53 49.31 47.61 47.58
Trans. Cons. (Ours) + Transformer 37.08 33.02 51.67 49.66 47.91 47.72

Fig. 2: Segmentation masks for different methods and transfer ma-
trix for our proposed method. White borders show that our consis-
tency and transformer-based approach produces better segmentation.

3.3. Ablation Studies and Analyses

In Fig. 3 (a), we report results when alternative ways for update and
inference is done in test-time adaptation. Here, XY denotes that X is
the update pass and Y is the inference pass. For example, the default
setting of US is that update is done using unsupervised (U) head and
the supervised (S) head is used for predicting results. Results show
that this default setting is optimal and it surpasses over other con-
figurations. Fig. 3 (b) shows that the proposed method achieves an
overall performance improvement. As observed by the blue curve
(No Adaptation), mIoU increases slightly until 80 samples and then
reduces. This implies that performance with no adaptation varies
across a sequence of samples. However, the curves of our proposed
methods exhibit better performance than the No Adaptation curve
for all sequences. We observe significant gains using both the trans-
formation consistency loss and the transformer block.

Fig. 3: (a) Effect on mIoU by varying update and inference heads.
XY implies update using X head and inference using Y head.
(b) Performance evolution as sample sequence is processed by the
model.

Table 2: Effect of different design choices and varying feature map
inputs to our transformer module with No adaptation. Here, G, C,
and S denote GTA5, Cityscapes, and SYNTHIA dataset respectively.

Setup Orig F+1 Out F-1 F-2 No TF Recon Conv Conv+Lin
G→C 35.61 34.36 31.18 33.55 34.41 29.28 31.22 26.07 26.08
S→C 31.25 30.86 30.48 32.01 32.45 29.68 30.87 26.32 27.12

Table 3: Effect of increasing number of transformations for
GTA5→Cityscapes (left) and SYNTHIA→Cityscapes (right) re-
spectively. The last column (Loss) considers no adaptation baselines
when using corresponding unsupervised loss during pretraining

Setup 1 2 4 8 Loss 1 2 4 8 Loss
Min Entropy 36.74 36.29 36.14 36.23 35.61 30.17 30.80 30.78 30.69 31.25
Max Squares 36.97 36.65 36.51 36.34 34.18 30.89 30.28 30.54 30.61 30.31
Trans. Cons. 37.83 38.39 38.80 38.61 36.70 33.72 33.73 34.08 33.98 30.18

To analyse which feature layer is useful for input to our pro-
posed transformer decoder module, we consider different layer out-
puts (features) as input to the transformer module. Table 2 illustrates
performance based on different features. ‘Out’ represents using log-
its layer from prediction head output and ‘Orig’ represents the use of
default feature map (described in Sec 3.1). ‘F+1’ uses output from
the next layer (Block 4) of the ‘Orig’ setting. Likewise, ‘F-1’ &
‘F-2’ uses output of one and two layers before ’Orig’ setting, which
are outputs of Block 2 and Block 1, respectively. Results suggest
that ‘Orig’ produces the best result in case of GTA5→ Cityscapes,
but ‘F-1’ produces the best performance in case of SYNTHIA →
Cityscapes. Furthermore, all variations perform better than not hav-
ing transformer (No TF), a configuration where we have indepen-
dent supervised and unsupervised heads. We also analysed other de-
sign choices such as use of reconstruction loss during training (Re-
con), use of convolutional block (Conv) or additional linear layer
(Conv+Lin) for generating transfer matrix. All these variations still
perform poor compared to our proposed transformer variants.

We also analysed the effect of varying the unsupervised loss
function LUSup in Eq. (4) applied during pre-training phase of
transformer block. We perform experiments with different objec-
tives: transformation consistency, max squares and min entropy
as they represent competitive and common methods reported in
previous experiments. From Table 3 last columns, we notice that
transformation consistency performs the best in case of GTA5 →
Cityscapes and max squares performs the best in case of SYNTHIA
→ Cityscapes. We also reported in Table 3, the results of increasing
transformed samples during adaptation for transformation consis-
tency, max squares and min entropy. We observe that as number of
transformations increases, performance improves in case of trans-
formation consistency, especially up to 4 but saturates after that.
However, increasing number of transformed samples do not increase
the performance for min entropy and max squares based methods.

4. CONCLUSION

In this paper, we propose a framework for online test-time adaptive
semantic segmentation. Our method consists of learning a trans-
former module to map unsupervised predictions to supervised pre-
dictions. We also proposed transformation consistency as a fine-
tuning objective to adapt our model on online unlabeled target do-
main data. Experimental studies showed that our proposed frame-
work outperforms other competitive methods both quantitatively and
qualitatively. Furthermore, we carried out extensive analyses to find
out design choices and ablations of our framework that affect seg-
mentation performance.
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A. ADDITIONAL IMPLEMENTATION DETAILS

Here, we describe some of the experimental details that have been
omitted in the original paper due to space limits. The pre-training
scheme used is the same as [29]. We used a batch size of 4 and
the model is trained on single V100 GPUs. The polynomial learning
rate scheduler was used with a power of 0.9. For the transformer
decoder module, we use 4 heads.

For the the color jitter operation in computing the transforma-
tion consistency loss, we used a value of 0.75 for all of brightness,
contrast, saturation and hue. For the random crop operation, we used
crop ratio of 0.5. For the pixel shuffle operation, we use patches of
size 256 that are randomly shuffled. Also, we found that updating
layers beyond batch norm and updating for more than 1 iteration per
sample yielded poorer results and hence we don’t report them.

We also proposed two adaptation losses: Selective Cross En-
tropy and Special Cross Entropy. The Selective Cross Entropy loss
for a pixel is defined as follows:

Lsel = −
L∑
l

I(l, pl) log pl (6)

where pl is the probability of class l among L classes. I(l, pl) is an
indicator function which is 1 if and only if pl is greater than 0.8 and
also if l is the pseudo-label for the pixel. Otherwise, I(l, pl) is 0.
The pseudo-label is found by finding the class l which maximizes pl
over all the possible L classes. The total loss for adaptation is found
by averaging Lsel over all the pixels.

The Special Cross Entropy loss for a pixel is defined using a
transformation consistency scheme. Consider an input image x and
it’s photometric transformation x̃. For a particular pixel, let x and
x̃ generate probabilities pl and p̃l for a particular pixel and class l.
Then, the loss is defined as

Lspc = −
L∑
l

w(pl, p̃l) log p̃l. (7)

Here, w(pl, p̃l) is 1 if pseudo-labels extracted from pl and p̃l by
argmax operation are the same. Otherwise, we use the following:
w(pl, p̃l) = exp (−||pl − p̃l||22). The total loss for adaptation is
found by averaging Lspc over all the pixels.

We also experimented with other architecture designs, the re-
sults of which are shown in Table 4 of the main paper. The first ar-
chitecture modification uses reconstruction (Recon), where the input
images are reconstructed using the L2 loss. The reconstruction net-
work is applied on top of the default feature map and consists of two
modules. The first module is a duplicate of the fourth block of the
ResNet architecture. The second module is a duplicate of the clas-
sifier module except that it outputs three channels for reconstructed
input images. Furthermore, we also explored non transformer-based
architectures for learning the mapping from unsupervised to super-
vised predictions. The first type (Conv) consists of two convolu-
tional blocks where each block consists of a convolution layer and
batch normalization connected through a ReLU non-linearity. Spa-
tial average pooling is applied and reshaped to the transfer matrix
dimension. In this case, feature channel size changes from 1024 to
512 to 361 which is then reshaped to a 19 times 19 transfer matrix,
when the number of classes is 19. The second type (Conv + Lin)
of mapping architecture also consists of two convolutional blocks.
However, there is an additional linear layer after average pooling.
In this case, feature channel size changes from 1024 to 512 to 256
which is then mapped to a dimension of 361 by a linear layer. That

feature is then reshaped to a 19 times 19 transfer matrix. For tasks
containing 13 classes, the transfer matrix size will be 13 times 13.

B. ADDITIONAL EXPERIMENTS

In this section, we report results of additional experiments. For pre-
training the transformer module, when we use positional encoding, it
produced a relatively poorer no adaptation recognition performance
of 34.54% mIOU compared to the default of 35.61% mIOU for
GTA5 → Cityscapes. For SYNTHIA → Cityscapes, using posi-
tional encoding produced slightly better recognition performance of
31.77% mIOU compared to the default of 31.25% mIOU.

In Table 4, we report results of the variation in the distance met-
ric used for Lp(·) and Lg(·) in Eq.5 of the main paper. The default
metric is L2 distance over the logits o. Another variation includes
L1 loss over the logits. Alternatively, L1 or L2 distances can be
applied on the probabilities that are obtained by applying softmax
on the logits. Results on both benchmarks GTA5→Cityscapes and
SYNTHIA→Cityscapes show that the default metric is the most op-
timal. Applying L1/L2 distances over probabilities show poorer re-
sults possibly because probabilities have lower ranges and do not
provide higher gradient magnitudes for model update. We also tried
applying KL divergence loss between the probabilities but it yielded
very poor mIoU i.e. 1.75 % and 2.08 % for the GTA5→Cityscapes
and SYNTHIA→Cityscapes setups respectively.

Table 4: Effect of using different consistency losses during test-time
adaptation.

Setup L2 Log. L1 Log. L2 Prob. L1 Prob.
GTA5→Cityscapes 37.83 36.62 34.45 34.59

SYNTHIA→Cityscapes 33.72 32.65 30.98 31.06

In Table 5, we vary λ, which is the weight on the unsuper-
vised loss LUSup used for pre-training and defined in Eq.4 of
the main paper. This table shows no adaptation results using our
transformer module when evaluated using GTA5→Cityscapes and
SYNTHIA→Cityscapes benchmarks. We obtain optimal results for
the default value of λ = 0.1. Higher values of λ causes larger drop
in performance probably because the network tries to focus less
on learning using supervisory signals compared to learning from
self-supervision.

Table 5: Effect of using different λ without adaptation.

λ 0.01 0.1 1 10
GTA5→Cityscapes 35.22 35.61 33.39 33.19

SYNTHIA→Cityscapes 30.90 31.25 30.47 30.01

In Table 6, we study the effect of increasing the size of the trans-
former decoder module, when evaluating using GTA5→Cityscapes
and SYNTHIA→Cityscapes benchmarks without adaptation. Re-
sults show that having 1 layer for the transformer decoder produces
the optimal performance. Surprisingly, using 4 layers for the trans-
former module produces large drop in performance (14.37) for
GTA5→Cityscapes. This maybe due to severe overfitting of the
transformer module, when it is pre-trained on the GTA5 dataset.

In Table 7, we report accuracy results of methods that use trans-
formation during test-time adaptation. The accuracy numbers are
replicated from Table 1, 2 and 3 in the main paper except that we
also report standard deviation across 5 runs. This is important to



Table 6: Effect of using different number of layers for the trans-
former decoder without adaptation.

No. of Layers 1 2 3 4
GTA5→Cityscapes 35.61 33.49 34.44 14.37

SYNTHIA→Cityscapes 31.25 30.71 31.18 31.20

show because the transformations are generated randomly and they
produce different results across different runs. From the results in
Table 7, we observe that all the methods are stable across differ-
ent runs with low standard deviations. Our proposed method has
comparatively higher standard deviation but the improvement is still
statistically significant compared to other methods.

Table 7: Segmentation mIOU results for transformation-based
approaches along with standard deviation. Here CS stands for
Cityscapes and SYN stands for SYNTHIA.

Source→Target

Method Backbone C
S→

R
om

e

C
S→

R
io

C
S→

To
ky

o

C
S→

Ta
ip

ei

G
TA
→

C
S

SY
N
→

C
S

S4T [32] DeepLab-V2 50.51
(0.02)

49.43
(0.05)

47.87
(0.01)

45.47
(0.02)

35.66
(0.03)

30.89
(0.05)

Spec Cross Entropy RN-101 50.63
(0.02)

49.49
(0.01)

47.91
(0.01)

45.50
(0.01)

36.22
(0.03)

28.97
(0.01)

Trans. Cons. (Ours) 50.82
(0.01)

50.43
(0.12)

48.20
(0.09)

45.88
(0.08)

37.83
(0.12)

33.72
(0.09)

Trans. Cons. (Ours) + Transformer 51.67
(0.01)

49.66
(0.08)

47.91
(0.07)

47.72
(0.08)

37.08
(0.09)

33.02
(0.06)

Quantitative results on the individual effects of photometric and
geometric transformation consistency losses are shown in Table 8.
Results show that removing either of the photometric transformation
consistency loss term or the geometric transformation consistency
loss term produces drop in recognition performance across all the
datasets. This shows that a combination of both these consistencies
are required for improved performance.

Table 8: Results for GTA5 (GTA)-to-Cityscapes (CS), SYN-
THIA (SYN)-to-Cityscapes (CS) and Cityscapes (CS)-to-CrossCity
(Rome, Rio, Tokyo, Taipei) experiments.

Source Dataset→ Target Dataset

Method Backbone G
TA
→

C
S

SY
N
→

C
S

C
S
→

R
om

e

C
S
→

R
io

C
S
→

To
ky

o

C
S
→

Ta
ip

ei

Trans. Cons. w/o Lp(o
u, õu) DeepLab-V2 37.33 33.48 50.64 49.96 48.10 45.17

Trans. Cons. w/o Lg(Ag(o
u), ôu) RN-101 37.29 33.51 50.42 50.03 47.96 45.31

Trans. Cons. 37.83 33.72 50.82 50.43 48.20 45.88
Trans. Cons. w/o Lp(o

u, õu) DeepLab-V2 37.05 32.84 51.62 49.60 47.44 47.38
Trans. Cons. w/o Lg(Ag(o

u), ôu) RN-101 37.04 32.97 51.65 49.58 47.57 47.29
Trans. Cons. + Transformer 37.08 33.02 51.67 49.66 47.91 47.72

C. VISUALIZATION

We also visualize segmentation maps for two cross dataset setups:
GTA5 → Cityscapes, Cityscapes → Cross-city. Results are shown
in Figs. 4 and 5, respectively. Overall, our proposed approaches of
using transformation consistency and transformer module produces
comparatively better segmentation maps. However, the improve-
ment is less in the case of real-to-real domain shift of Cityscapes
→ Cross-city benchmark.



Fig. 4: Segmentation map predictions for 4 different images from Cityscapes when pre-trained on GTA5 and adapted on Cityscapes. From
top to bottom: original image, ground truth, no-adaptation, max squares [29], min entropy [22], transformation consistency and no adaptation
with our transformer module.



Fig. 5: Segmentation map predictions for 4 different cities. From left to right: Rome, Rio, Tokyo, Taipei. Model has been pretrained on
Cityscapes and adapted on each of the cities. From top to bottom: original image, ground truth, no-adaptation, max squares [29], min
entropy [22], transformation consistency and no adaptation with our transformer module.
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