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ABSTRACT

In this paper, we propose a method for intermediating multiple
speakers’ attributes and diversifying their voice characteristics in
“speaker generation,” an emerging task that aims to synthesize
a nonexistent speaker’s naturally sounding voice. The conven-
tional TacoSpawn-based speaker generation method represents the
distributions of speaker embeddings by Gaussian mixture models
(GMMs) conditioned with speaker attributes. Although this method
enables the sampling of various speakers from the speaker-attribute-
aware GMMs, it is not yet clear whether the learned distributions can
represent speakers with an intermediate attribute (i.e., mid-attribute).
To this end, we propose an optimal-transport-based method that in-
terpolates the learned GMMs to generate nonexistent speakers with
mid-attribute (e.g., gender-neutral) voices. We empirically validate
our method and evaluate the naturalness of synthetic speech and
the controllability of two speaker attributes: gender and language
fluency. The evaluation results show that our method can control the
generated speakers’ attributes by a continuous scalar value without
statistically significant degradation of speech naturalness.

Index Terms— speech synthesis, cross-lingual speech synthe-
sis, multi-speaker speech synthesis, speaker generation

1. INTRODUCTION

Despite the improved quality of synthetic speech through deep neu-
ral network (DNN)-based text-to-speech (TTS) [1]-[3], diversifying
speakers’ voices remains challenging. One approach to increase
speaker diversity is multi-speaker TTS [4]], in which a single TTS
model reproduces the voice characteristics of speakers included in
a multi-speaker corpus. However, the training requires sufficient
speech data for each speaker to achieve high-quality TTS. Although
few-shot speaker adaptation [5]-[8] and zero-shot speaker encod-
ing [6]], [9]-[12] can reproduce a target speaker’s voice using only
a few utterances of the speaker, they still need an existent speaker’s
speech data. Some work has attempted to generate nonexistent
speakers from a trained multi-speaker TTS model to deal with the
difficulty in collecting speech data of existent speakers [6], [13],
[[14]. Recently, Stanton et al. [|15] define this task as “speaker gen-
eration,” where the purpose is to synthesize nonexistent speakers’
natural-sounding voices and achieve practical applications such as
audiobook readers and video production.

Stanton et al. [15] proposed TacoSpawn as a method for resolv-
ing the speaker generation. TacoSpawn jointly learns two DNNs: a
multi-speaker TTS model and an encoder that defines the parametric
distributions of speaker embeddings. The former generates a target
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speaker’s mel-spectrogram from the input text and the speaker em-
bedding. The latter learns the distributions of speaker embeddings
as Gaussian mixture models (GMMs) for each “speaker attribute”
(or “speaker metadata” [15]]) representing the attributes (e.g., gen-
der) of a specific speaker. The combination of these two models
achieves TTS of not only existent speakers’ voice, but also nonexis-
tent ones’ by sampling new embeddings from the speaker-attribute-
aware GMM.

Learned parametric distributions of speaker embeddings by the
conventional TacoSpawn method can potentially synthesize more
diverse speakers’ voices. For example, we can transform or interpo-
late the speaker embedding distributions to define a new distribution
for speaker generation. In other words, at present, TacoSpawn only
handles speakers with categorical attributes. However, by combin-
ing the distributions of individual attributes, it is possible to handle
speakers of non-categorical attributes. Such “mid-attribute speaker
generation” method would extend the application range of TTS
technologies, e.g., creating gender-neutral voices for communica-
tion that reduces gender bias and language-fluency-controllable TTS
for computer-assisted language learning [|16].

In this paper, we propose a method for intermediating multiple
speaker attributes by means of optimal-transport-based interpolation
of GMMs. Our method first computes the weighted barycenter of a
set of GMMs [17]], in which each GMM corresponds to one categor-
ical speaker attribute. Then, it defines a new distribution using the
weighted barycenter for sampling nonexistent speakers with a mid-
attribute controlled by interpolation weights. One can define such a
mid-attribute GMM by estimating its parameters from the interpola-
tion weights representing intermediate speaker attributes. However,
this simple method does not guarantee to estimate the best path for
interpolating the learned GMMs, since the order of the mixtures in
the GMMs is indefinite. In contrast, the optimal transport theory
supports the smooth interpolation of multiple distinct distributions
and fits our focus on the interpolation of multiple speaker-attribute-
aware GMMs. We empirically validate our method by evaluating the
naturalness of synthetic speech and the controllability of two speaker
attributes: gender and language fluency. The evaluation results show
that our method can control the generated speakers’ attributes by
a continuous scalar value without statistically significant degrada-
tion of speech naturalness. The speech samples are available on our

project pag
2. RELATED WORKS

2.1. Speaker embedding prior of TacoSpawn

TacoSpawn [[15] learns the speaker embedding distribution as a
speaker-attribute-aware GMM and uses the learned distribution to
generate a nonexistent speaker’s voice. Let D and K be the di-
mensionality of the speaker embeddings and the number of mixture

1https ://sarulab-speech.github.io/demo_
mid-attribute-speaker—generation
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Fig. 1. Training and synthesis of TacoSpawn.

components of the GMM, respectively. A DNN-based encoder
takes a speaker attribute c as the input and predicts the GMM pa-
rameters, i.e., the non-negative mixture weights a(c) € R, the
mean vectors p(c) € R¥*P and the non-negative variance vec-
tors o2(c) € R¥*P that represent the components of the diagonal
covariance matrices. With these parameters, the speaker embed-
ding prior p(s|c) that represents the distribution of the speaker
embedding vector s € R is described as

p(sle) =D ar (N (sipy (¢) . I} (), (1
k=1

where N (-) is the Gaussian distribution and a (c), py, (c), and
o3 (c) are the kth component of a(c), u(c), and o(c), respec-
tively, and are the parameters of the kth mixture. I € RP*P is the
identity matrix.

The DNN-based encoder consists of a simple multi-layer per-
ceptron and some activation functions. The objective function
for the DNN training is defined as the negative log-likelihood,
—>_;logp(sjlc;), where s; and c; are the jth speaker’s embed-
ding vector from the speaker embedding table and jth speaker’s
attribute, respectively. Note that this DNN is jointly trained with the
TTS model. Figure[T]shows the overview of the TacoSpawn.

2.2. Optimal transport theory

The optimal transport is an optimization problem to find the optimal
mapping 7: R™ — R™: & — T () that moves from a distribution
Pa to a distribution py, such that [, pa (z)de =[5, pb (x) de.
The optimal mapping in this case minimizes the sum of costs com-
puted by a defined cost function C (x, T (x)). In the case of a con-
tinuous probability distribution, the objective is expressed by

min [ C(w,T (2)) pa () da, @)
R‘IL
where

/ P () dz = o (3) 3)
{zeR™;T(x)=y}

This is known to be an ill-posed problem; it is often carried out in
practice under conditions that permit transport from one point to sev-
eral points, in line with Kantorovich’s setting [[18]].

The optimal 7" (x) guides a transportation path with the minimal
cost between two distributions (see [19] for the details), and the in-
termediate state in the path gives the interpolated distribution, which
is called a “barycenter” in the context of optimal transport. The op-
timal transport can move a distribution, or a continuous mass, along
an optimal path, and can heuristically modify the path with more
desirable characteristics by manipulating the cost function. For ex-
ample, a previous method [20] defines the movement of a GMM by
using the original cost function so as to form the state of the GMM
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Fig. 2. Mid-attribute GMM, where L = 2, K = 2.

during that movement, which can maintain the same shape before
moving.

3. PROPOSED METHOD

3.1. TTS model with speaker attribute encoder

We use a multi-speaker TTS model with a TacoSpawn [[15]]-based
speaker attribute encoder trained in the same manner as TacoSpawn.
The TTS model, constructed as a sequence-to-sequence model,
predicts speech features from a phoneme sequence and a speaker
embedding vector s. At the same time, the speaker attribute en-
coder, constructed with an embedding layer, predicts parameters of
a speaker-attribute-aware GMM from the desired speaker attribute
c. The training and synthesis processes are the same as those in
TacoSpawn shown in Figure [T Supposing there are L kinds of
speaker attributes {¢;|l =1,2,...,L} , we create in total L K-
mixture GMM p; (s) for each ¢;. The ith GMM is defined as:

K
pi(s) = p(sle) = S il (i Iots), @)
k=1
where o 1, By ks and o, are the mixture weight, mean vector, and
standard-deviation vector of the kth mixture of the [th GMM, re-
spectively. From each p; (s), we generate speaker embeddings with
the attribute c;.

3.2. Speaker attributes intermediation
We present a method to obtain the intermediate speaker attributes by

interpolating L speaker-attribute-aware GMMs {p; (s) [l = 1,2,...,L}.

We define a mid-attribute GMM as the weighted barycenter of the L
GMMs with interpolation weights {\[l =1,2,...,L},>, A =
1, as illustrated in Figure[2]

3.2.1. Weighted barycenter of non-mixture Gaussian distributions:
preliminary

First, we describe the simplest case: the weighted barycenter with
each distribution being a single Gaussian distribution. To solve this
problem as the optimal transport, we define the cost function as a
square of Wasserstein distance W5 [19], [21]]-[23]] between the two
Gaussian distributions NV (g, Iog) and N (py, Io?). The cost
function is given as [24]

o — m11l5 + loo — o1 |3, )

where || - ||3 is the 2,2 norm.

According to [[17], the weighted barycenter of L Gaussian distri-
butions {N (p;, Ioi) [l =1,2,..., L} with interpolation weights
{A\1,X2,..., AL} is also a Gaussian distribution N (', Io'?). The
p’ and o’ are obtained by minimizing the objective function

L
Irlr,lin/ Z/\ZWQ W~V (;L',Ioﬂ) SN (p,l,IalQ))2. (6)
7 =1

By solving Eq. (6) with Eq. (), they are given as

L L
w=> N, o= Nou O]
=1 =1



3.2.2. Weighted barycenter of GMMs

The weighted barycenter of L GMMs {p; (s)} with interpolation
weights {\;} is calculated as a combination from M candidates of
Gaussian distributions, {N (., Io72) [m =1,2,..., M},

min ZAZWQ N (s T02) sp1py 0 (8))7, (®)

B 127
where m is the mixture index of the barycenter and py, ,, (8) =
N (S§ Hz,k,,m>10'z2,kl,m)
mixture weight Lk - Each m is assigned to one of possible se-
quences of [k, |k =1,2,...,L] € {1,2,..., K}", where k; is a
mixture index of the Ith GMM. k; ., indicates k; assigned to m.
Thus, the number of mixtures is equal to the number of seences

is the ki,m»th mixture of p; (s) with the

M K*. The optimal p/, and o2 are obtained as Eq. (7), e.g.,
M = ZL:1 )‘lﬂl,k,,my

The mixture weights {a},} for each N (u!,,Io'7) are esti-
mated by solving

K M
ﬂflnkln ZZ Z N7 mWe (N (i, Torm)  puk (3))27 9
M =1 k=1 m=1
under

M K
g T, k,m = Ok, § T1,kym = " =
m=1 k=1

Solving Eq. (9, o, is given as

K
=> Tikm an
k=1

Minimization of Eq. @) can be regarded as the optimal transport
of discrete probability distributions. In our implementation, we ig-
nore the right side of Eq. @) to simplify the optimization of 7 . .
The optimal transport thus becomes a hard mapping: rather than
mapping all mixtures of each GMM, one sub-optimal (i.e., closest
in the square of the Wasserstein distance) mixture in each GMM is
mapped to one closest mixture of the barycenter. Namely, 7k m is
set to Ajay, i, for the sub-optimal mixture and O for the others.

K
> wrkm.  (10)
k=1

3.2.3. Speaker sampling of intermediated attribute

We now describe how to generate new speakers with mid-attributes
and synthesize their voices using the models described in Section
B} To generate a new speaker with a mid-attribute, we randomly
sample a vector from the speaker-attribute-aware GMM of the tar-
get mid-attribute. Using this sampled vector, we can synthesize
the voice with the characteristics of the target mid-attribute. For
example, if ¢; means Japanese male and cp is Japanese female,
the weighted barycenter of {p; (s)} with interpolation weights
{Ai=1,2 = 0.5, A3<i<r. = 0} represents the middle attribute be-
tween Japanese male and Japanese female, which can be regarded
as a Japanese speaker with a mid-attribute in gender.

4. EXPERIMENTAL EVALUATION
4.1. Experimental setup

In this experiment, we built a speaker generation model for Japanese
TTS that can control the speaker’s gender and language fluency (i.e.,
nativeness = native-accented through foreign-accented). As train-
ing corpora, we utilized JVS [25] (Japanese) and VCTK [26] (En-
glish), which include 100 Japanese speakers (49 males and 51 fe-
males) and 108 English speakers (47 males and 61 females), respec-
tively. The attribute of each speaker was described as a combination

(b) gender (c) nativeness (2) two-axis
control control control

(a) original

&
pp
B
B

Gender

Fig. 3. Target distributions in the experiment.

of the speaker’s gender and nativeness. Since we aimed to synthesize
Japanese speech, English speakers were considered as “non-native
speaker” (this nativeness-aware training is described below). For ex-
ample, the attribute of a male speaker in JVS is set to [male, native],
and a female speaker in VCTK is set to [female, non-native]. Thus,
there were L = 4 kinds of speaker attributes available for this exper-
iment. Additionally, we used JSUT [25]], a Japanese single-speaker
corpus, for pre-training the TTS model. All speech data were resam-
pled to 22.05 kHz.

Our expectation is that intermediating the attributes can not only
generate a gender-neutral speaker’s voice but also control the na-
tiveness of the speaker. However, our preliminary experiments had
shown that naive implementation didn’t reflect the nativeness. To
achieve the nativeness-aware TTS, we trained a multi-lingual TTS
model with a long short-term memory (LSTM) [27]-based native-
language classifier. The classifier estimates the speaker’s native lan-
guage from a mel-spectrogram generated by the TTS model. At the
same time, the TTS model is trained to make the native-language
classification easier. The DNN architecture for the classifier was
based on Xin et al.’s work [28]]. We empirically confirmed that the
TTS model synthesized non-native speech reflecting the characteris-
tics of native language, i.e., English-accented Japanese speech.

We used a FastSpeech 2 [3[|-based TTS model. The TTS training
objective here was the same as that in original FastSpeech 2. We
used a publicly available PyTorch implementatimﬂ of FastSpeech
2 followed by a pre-trained HiFi-GAN [29] neural vocodeﬂ Input
texts were phonemized with pyopenjtalk’| for Japanese and eSpeak
NCﬂ for English.

For speaker generation, we used 3-mixture GMMs as the
speaker distribution that modeled 256-dimensional speaker em-
beddings. As shown in Figure[3(a), our model learned four GMMs
representing the four speaker attributes along two axes: gender and
nativeness. We then used these GMMs in two experiments: 1) one-
axis control and 2) two-axis control. The former interpolated the two
GMMs of two attributes by changing one axis and fixing the other,
as shown in Figure [3(b) and (c). Namely, the interpolation weights
took 0.5 for the two used GMMs and 0.0 for the others. The latter
investigated the interaction between the two axes by interpolating
the four mid-attribute GMMs, as shown in Figure[3{d). Namely, all
the interpolation weights were 0.25. In summary, we used nine dis-
tributions for this evaluation, i.e., four categorical-attribute GMMs
and five mid-attribute GMMs. Actually, we conducted evaluations
at even finer intervals (e.g., weights of 0.25 and 0.75 in the one-axis
control) , but we show only the results of the above nine GMMs
due to space constraints. In addition, we did not evaluate existent
speakers’ synthetic speech samples, since Stanton et al. had already
demonstrated that TacoSpawn could synthesize voices of nonex-
istent speakers with categorical attributes as natural as them [[15].

2https ://github.com/Wataru-Nakata/FastSpeech2-JSUT,
3https://github.com/jik876/hifi-gan

4https ://github.com/r9y9/pyopenjtalk

51'1ttps ://github.com/espeak-ng/espeak-ng
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4.2. Subjective evaluation
We carried out the subjective evaluation of our method from three
perspectives: perceived gender, perceived nativeness, and natural-
ness of synthetic speech. We synthesized the Japanese speech of 225
(25 x 9 distributions) nonexistent speakers generated by our model.
Sentences of the recitation324 subset in the ITA corpusﬂ were used
for the evaluation. We conducted the subjective evaluation using
Lanceraﬂ a Japanese crowdsourcing platform. We recruited 750 lis-
teners for each evaluation. Each listener evaluated 17 speech sam-
ples with a 5-scale integer. For convenience of numerical evaluation,
we assigned female and male to —2 and +2 on the “Gender” axis,
respectively, and the sign of the number had no particular mean-
ing. The naturalness rating ranged from 1 (very unnatural) to 5 (very
natural). The speaker attributes were balanced among the samples
described in Section[d.1] The linguistic contents of the sentences we
used did not evoke gender or nativeness, but even so, we instructed
the listeners not to pay attention to the content of the presented ut-
terances when evaluating the speech samples. At least 20 listen-
ers evaluated one speaker’s synthetic speech. The listeners’ answers
were aggregated for each speaker. In the nativeness evaluation, we
presented English-accented Japanese natural speech from the UME-
JRF corpus [30] to the listeners as an example of non-native speech.
We visualized the evaluation results by kernel density estima-
tion (KDE) plots. Figure f] and Figure [5] show the KDE plots of
the perceived gender and naturalness of synthetic speech within na-
tive and non-native speakers, respectively. “Male” and “Female”
are generated by the TacoSpawn framework, and “Mid” is gener-
ated by our method using the optimal-transport-based interpolation.
We can see that the perceived gender of synthetic speech with the
mid-attribute (“Mid”) is widely distributed while keeping the natu-
ralness achieved by the original speaker generation with categorical
attributes, i.e., “Male” and “Female.” This result indicates that our

(’https ://github.com/mmorise/ita-corpus
7https ://www.lancers. jp/
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Fig. 10. Mean and standard deviation of naturalness for each at-
tribute speaker. Red line denotes the significant differences between
the two connected scores.

proposed method can cover wider speaker distributions for speaker
generation comparing to the conventional TacoSpawn. We observe
a similar tendency in the KDE plots of perceived nativeness (—2:
non-native to 4+2: native) and naturalness of synthetic speech within
female and male speakers shown in Figure [] and Figure[7] respec-
tively. One noteworthy point here is that the naturalness tends to
increase in proportion to the nativeness. This result is quite under-
standable because the TTS model never observes the ground-truth
non-native Japanese speech data during the training. We also find
that the boundary between the two distributions of non-native and
native speakers is more ambiguous than those shown in Figure[dand
Figure[5} One reason might be the characteristics of the evaluation
data, which included some sentences composed of rare moras and
strange words in Japanese.

Figure[8]and Figure[9]show the results of two-axis control exper-
iments, i.e., gender-axis control within mid-attribute speakers in na-
tiveness and nativeness-axis control within mid-attribute speakers in
gender, respectively. We can see that the “Mid” distributions in these
two figures cover the middle ranges of both gender and nativeness.
From these results, we conclude that our method can interpolate even
the mid-attribute distributions and achieve the cross-attribute control
of mid-attribute speakers.

Figure [T0] shows mean opinion scores (MOS) values regarding
the naturalness of speech generated by using each of the nine dis-
tributions. We observe that MOS values of mid-attribute speakers’
synthetic speech are comparable to or higher than those of synthetic
speech with the categorical attributes. This result demonstrates that
our method achieves mid-attribute speaker generation without de-
grading the naturalness of synthetic speech.

5. CONCLUSION

In this paper, we proposed a method for generating nonexistent
speakers with mid-attributes by means of the optimal-transport-
based interpolation of speaker-attribute-aware GMMs. Subjective
experiments confirmed that our method can generate nonexistent
speakers that have perceptible mid-attributes, without significantly
degrading speech naturalness. We plan to increase the language
diversity in the future.
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