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ABSTRACT

Multi-modal contrastive learning techniques in the audio-text do-
main have quickly become a highly active area of research. Most
works are evaluated with standard audio retrieval and classification
benchmarks assuming that (i) these models are capable of leveraging
the rich information contained in natural language, and (ii) current
benchmarks are able to capture the nuances of such information. In
this work, we show that state-of-the-art audio-text models do not yet
really understand natural language, especially contextual concepts
such as sequential or concurrent ordering of sound events. Our re-
sults suggest that existing benchmarks are not sufficient to assess
these models’ capabilities to match complex contexts from the au-
dio and text modalities. We propose a Transformer-based architec-
ture and show that, unlike prior work, it is capable of modeling the
sequential relationship between sound events in the text and audio,
given appropriate benchmark data. We advocate for the collection
or generation of additional, diverse, data to allow future research to
fully leverage natural language for audio-text modeling.

Index Terms— Multi-modal learning, Language-based audio
retrieval, Audio search, Audio understanding, Contrastive learning

1. INTRODUCTION

Multi-modal contrastive learning such as Contrastive Language-
Image Pre-Training (CLIP) [1] has shown great success in various
applications. In particular, it unlocks solutions to cross-modal tasks
such as zero-shot image recognition [2] or visual question answer-
ing [3} 4] in vision-language. Audio-visual contrastive models have
been used for localizing visual sound [5} |6], cross-modal retrieval
[7], and zero-shot classification [8 [9]. Recently, audio-fext mod-
els have received growing attention, as evidenced by the DCASE
challenge on Language-Based Audio Retrieval [10], and have been
applied to music audio for genre classification and tagging [11],
as well as environmental sounds for language-based audio retrieval
12,113} 1144 115], and zero-shot classification tasks [[12}116].

Current state-of-the-art (SOTA) audio-text models utilize dual
encoder architectures adopting popular pre-trained language (e.g.,
BERT [17]) and audio (e.g., PANNs [18]) models to first encode
each modality separately. Both encoders are concatenated with ag-
gregation/projection (Agg/Proj) layers, and further trained with con-
trastive pretext tasks using audio-text pairs to learn to match be-
tween audio and natural language, as depicted in Figure |I| on the
left. Most prior works focus on exploring architectural choices such
as encoders and Agg/Proj layers [13] or loss functions [14]], and are
evaluated with common benchmarks for retrieval [|13,114}[15]] or clas-
sification [12| [16]]. It is typically assumed that these approaches are
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Fig. 1. Block diagrams for pre-training and downstream tasks.

capable of leveraging natural language to guide learning, since train-
ing data may include contextual descriptions of sound events using
words such as “then”, “before”, or “after” for sequential relations
and “with” or “as” for simultaneity.

However, there is a lack of exploration of what these audio-text
models really learn. More specifically, are complex contextual ideas
described in the text, such as sequential and concurrent ordering,
successfully captured by existing systems? In the 2022 DCASE
Challenge on Language-Based Audio Retrieval (Task 6B) [10]], most
state-of-the-art (SOTA) systems employ pre-trained PANNs audio
encoders with mean or max pooling over time, followed by multi-
layer perceptron (MLP) projection layers [19} [20]. We hypothesize
that these Agg/Proj mechanisms are not sufficient to capture the con-
textual complexities that often appear in natural language. This idea
is related to studies that have shown that language models do not
always leverage word ordering [21].

In this work, we present experiments designed to investigate cur-
rent SOTA audio-text models’ capabilities: What information are
they leveraging to match audio to natural language queries? Can they
actually model complex relationships such as sequential and concur-
rent ordering? How do model design choices such as the language
model used impact the performance of the model? Our main findings
and contributions are as follows: (i) We show that current models fo-
cus on nouns and verbs for retrieval, and do not fully utilize the entire
sentence; (ii) We show that SOTA systems that use temporal pooling
and MLP as Agg/Proj mechanisms cannot capture concurrent or se-
quential sound event relations; (iii) We propose a Transformer-based
architecture and show that, unlike prior work, it is capable of cap-
turing sequential relationships between sound events in the text and
audio, given sufficient training data and an appropriate benchmark;
(iv) We find that existing benchmarks are insufficient for evaluating
the sequential modeling abilities of audio-text models.



2. METHODOLOGY

2.1. Baseline model and Transformer-based model

We use a similar setup to the top performing systems in the 2022
DCASE Challenge on Language-Based Audio Retrieval [10] as our
baseline. For the audio encoder, we use a ResNet38 with pre-trained
weights from PANNSs [18]] (2048 output dimensions), followed by an
MLP projection layer to produce 1024 dimensions. For the text en-
coder we use RoBERTa-Large, as a more powerful replacement for
the BERT model used in a top-performing system from the DCASE
challenge [20]. We validate this choice in the preliminary experi-
ment presented in Section The model is pre-trained with In-
foNCE loss [22] using a 10~ learning rate, batch size of 64, with
standard StepLR scheduler (step_size = 20, gamma = 0.1) and
early stopping criteria, on two V100 GPUs.

One of our hypotheses is that SOTA models represented by this
baseline, with temporal pooling aggregation followed by MLP pro-
jection, will struggle to capture the sequencing of sound events over
time. To investigate this, we propose a new architecture that replaces
these Agg/Proj layers with a 2-layer 2-head Transformer with posi-
tional encoding, one for the text branch and one for the audio branch.
Each Transformer takes the encoder embeddings of all timestamps
and outputs 1024 dimensional vectors. We use the output from the
first position (i.e., the [CLS] token) as the final representation. On
the text branch the Transformer takes the word (token) embeddings
from the language encoder as input, and on the audio branch we
apply the audio encoder to consecutive 1 s chunks to produce a se-
quence of audio embeddings, and pass these to the Transformer.

2.2. Audio-text model pre-training

The model is trained on a standard contrastive pretext task using
pairs of audio and natural language text. Similar to CLAP [16]], we
combine the training sets from multiple audio captioning datasets to
create a single, larger, training set. These datasets include (i) Au-
dioCaps [23]: we were able to obtain 49k pairs (out of 50k); (ii)
Clotho [24]: 3839 audio clips with 5 captions each from the training
subset provided; (iii) MACS [25]: 3930 audio clips with 5 captions
each; and (iv) FSD50K [26]: 36k pairs resulting from concatenat-
ing labels and descriptions of corresponding audio metadata to form
natural language sentences. In total, we obtain 123k audio-text pairs
which constitute our pre-training set.

2.3. Language-based audio retrieval

To probe the model, we consider the downstream task of language-
based audio retrieval. This task models the application in which the
user queries the system using natural language to search for audio
assets (clips) in a collection, and the audio assets are ranked by the
system based on their similarity to the query text.

Given the query text, the model must retrieve its correspond-
ing audio clip. The task is evaluated using a dataset of text-audio
pairs. The pre-trained audio-text model is used to extract audio em-
beddings for the entire audio corpus, and text embeddings for all
corresponding text descriptions. Then, each text description is used
as a query, and its embeddings are compared against all audio em-
beddings. The top k similar audio clips in the embedding space are
retrieved, as shown on the top right of Figure[I] We report Recall at
10 (R@10) as the evaluation metric. We use the following test sets,
which contain audio-text pairs where the text is a natural language
description of the audio, for evaluation in our experiments:

Language AudioCaps Clotho Clotho 2022|ESC-50 US8K DESED
Model R@10 F1
BERT-Base 0.786 0.486 0.437 |0.822 0.769 0.622
BERT-Large 0.794 0498 0.474 |0.794 0.746 0.612
RoBERTa-Base | 0.779 0.479 0.444 | 0.757 0.742 0.596
RoBERTa-Large| 0.798 0.505 0.477 0.78 0.753 0.611

Table 1. Task performance versus LM text encoder for the baseline.

AudioCaps [23]: A subset of AudioSet with annotated natural lan-
guage captions. The test set includes 814 audio clips, each 10 s long
with 5 captions. For evaluation, we use each caption independently.
Clotho [24]: The test set includes 1045 audio-text pairs, where the
audio is 15-30 s long. For the 2022 DCASE Challenge a new test set
was released with another 1k pairs, we refer to it as Clotho 2022.
In Section 3] we will present a series of carefully designed exper-
iments in which we manipulate the text and audio data either in the
pre-training set used to train the audio-text model or in the aforemen-
tioned test sets, in ways that shed light on the model’s capabilities
and what it is leveraging to perform language-based audio retrieval.

2.4. Choice of language model

To guide our choice of pre-trained language model (LM) for the
text encoder, we run preliminary experiments to evaluate its impact
on the downstream performance of the baseline model. We con-
sider two LM architectures that are commonly used by top audio-
text models from the DCASE challenge: BERT [17] and RoBERTa
[27]. The latter is considered an improved version of the former as it
uses dynamic masking, is trained with more data and larger batch
size. We evaluate two variants for each model, Base and Large,
with approximately 100M and 350M parameters respectively, and
output embedding dimensions of 768 and 1024, respectively. We
use pre-trained weights from huggingfaceﬂ take the embedding of
the [CLS] token as the input to the MLP projection layer, and pro-
duce embeddings with 1024 dimensions. We do not freeze the LM
weights, rather, we fine-tune both the audio and text encoders when
pre-training the audio-text model.

In addition to our main downstream task, we include two ad-
ditional tasks: zero-shot classification and sound event detection
(SED). For the former, we extract text embeddings from ground-
truth labels and assign each audio test sample to its closest label in
audio-text embedding space. We evaluate the task on ESC-50 [28]
and UrbanSound8K [29] using the datasets’ original splits, and re-
port the F1 metric averaged across folds. For SED, we slide the
model’s audio encoder over the signal to obtain embeddings every
50 ms and compare them to the text embedding of each class label.
We apply a threshold to decide if the class is active in each frame.
We use a random 20/80 split of the evaluation set to get validation
and test sets, and use the former to find the optimal threshold value
in [0, 1] and the latter to compute the evaluation metrics. We use
the public evaluation set of DESED [30], and report the standard
segment-based SED metrics for 1 s segments.

The results are shown in Table [} We see that the larger more
powerful RoBERTa Large performs best across the three language-
based audio retrieval benchmarks. Interestingly, BERT-Base works
best for zero-shot classification and SED, suggesting the choice
of LM should be informed by the target downstream task. Since
our focus in this work is on language-based audio retrieval, we use
RoBERTa-Large as the text encoder in all subsequent experiments.

https://huggingface.co/
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3. LIMITATIONS OF CURRENT AUDIO-TEXT MODELS

3.1. Does the model leverage natural language or keywords?

The goal of audio-text models is to leverage the full information in
the natural language text query, i.e., to go beyond keywords (tags).
Do current models achieve this? Or do they still mostly rely on key-
words, which are typically nouns and verbs (e.g., “dog”, “barking”).
To answer this, we pre-process the sentences in the pre-training data
to strip the text of everything that is not a noun or verb. We use
spaCy[’| with its provided POS tagger for filtering. For example, the
original sentence “A vehicle is passing through a forest road as birds
chirp in the background” becomes “Vehicle passing forest road birds
chirp background.” Note that we only pre-process the pre-training
data, while the downstream evaluation texts are not manipulated.

In Table 2] we present the results for the baseline model trained
either on the original data (Original) or the pre-processed sentences
containing only noun and verb tokens (NV). For all three benchmark
datasets, the model trained on nouns and verbs performs similarly or
better than the model trained with full sentences. This result is sur-
prising, and suggests the model pre-trained on natural language may
not be fully capturing the nuances and concepts in the sentences, and
is mostly relying on nouns and verbs to match for retrieval. Another
possibility is that since the evaluation datasets are limited to mostly
simple descriptions of sound events, they do not fully put the model’s
language understanding to the test, yielding the illusion that current
SOTA models that use temporal averaging for aggregation and MLP
projection layers successfully leverage natural language.

3.2. Does the model capture event ordering?

Another potential benefit of audio-text models is that they can un-
derstand complex queries in which one sound happens after another
sound, or some sounds happen at the same time. But do current mod-
els really capture these notions of event ordering and simultaneity?
To investigate this, we design experiments with manipulated sen-
tences [31]] to see whether event ordering and simultaneity, expressed
in the text using prepositions such as “before”, “after’, “then”, and
“as”, are captured by the audio-text model [32].

To see if the model can capture simultaneity, we take the 1640
sentences from our test sets that contain “as” and replace the preposi-
tion with “then”, in this way changing their meaning from describing
concurrent sounds to describing consecutive sounds. We do the op-
posite for the 1205 test sentences that contain “then”, replacing it
with “as”. We then use the manipulated text to query for the original
audio, and report R@ 10 where the retrieval set is all other sentences
with the same preposition. If the model can differentiate between
concurrent and consecutive events, we should see a notable drop in
performance for the manipulated sentences compared to using the
original ones. The results are reported in Table [3] where were ob-
serve only a marginal performance change. This suggests the model
cannot capture the concept of simultaneous sounds.

Next, we dig deeper into whether the model can capture event
ordering. We create a “preposition test set”, PTe, by taking the sen-
tences in the test subsets of AudioCaps, Clotho, and Clotho 2022,
and keeping only sentences that contain one of the following prepo-
sitions: “before”, “after”, “then”, and “followed by”. The distri-
bution of sentences with prepositions in PTe is provided in the top
row of Table[d In the bottom row we provide the distribution of
sentences with prepositions in the pre-training set. We then run the
following experiment: we take PTe and swap the order of the clauses

Zhttps://spacy.io/

AudioCaps Clotho Clotho 2022
Original 0.798 0.505 0.477
NV 0.796 0.524 0.506

Table 2. R@10 for the baseline audio-text model pre-trained using
the original text data (Original) and the filtered text data that only
contains nouns and verbs (NV).

Then
0.863

t/Then/As | As
0.844 | 0.822

r/As/Then
0.819

Table 3. R@10 for the baseline model on sentences containing
“then” or “as”, evaluated against the original sentences and on the
same sentence after swapping the two prepositions.

before and after the preposition to form new sentences. For exam-
ple, “Two cars drive past before a distant semi truck honks” becomes
“A distant semi truck honks before two cars drive past”. We use ei-
ther the original sentences or the swapped sentences as queries to
retrieve the original audio, and report Recall at 1 (R@1) to examine
the model under stringent conditions. As with the previous experi-
ment, if the model can capture sequential ordering, then its perfor-
mance should drop notably for the swapped sentences compared to
the original ones, since the manipulated texts list the sound events in
reverse order to their true sequencing in the audio. We compare the
performance of the baseline model on the two query sets against our
proposed Transformer-based model which, we hypothesize, should
benefit from its ability to model temporal sequencing. The results are
shown in Figure [2| with the baseline and our proposed architecture
indicated by their projection layer: MLP and Transformer, respec-
tively. The baseline performs equally (even marignally better) when
we swap the order of events in the query text, indicating it is not
capturing the ordering indicated by the prepositions. Conversely, the
Transformer, which performs better on the original sentences, drops
27 points for the swapped sentences, indicating it is capable of mod-
eling the sequencing of sound events.

To further study the effect of prepositions, we run an additional
experiment where we take a balanced set of 176 sentences from PTe,
half containing “before” and half “after”, referred to as Before After
Test (BAT). We compute the embedding distance between the audio
and these test sentences, with and without swapping the event order
by replacing “before” with “after” and vice versa, and count the %
of times the original sentence is closer to the audio than the swapped
one. For example, the sentence from the earlier example becomes
“Two cars drive past after a distant semi truck honks.” If the models
fail to capture event ordering, the result should be roughly 50% (i.e.,
random guessing). The results are reported in Figure [3] by the bars
marked “Original”. The baseline (MLP) yields roughly 50%, indi-
cating it cannot capture the difference between “before” and “after”.
The transformer does better than random (55%), albeit moderately.

3.3. Are the training data sufficient to learn about ordering?

Could the limited gains on BAT when using a Transformer be due
to a lack of data? Sentences with prepositions (PTe) represent less
than 10% of the pre-training data (Tr), and less than 1% of the sen-
tences in Tr contain “before” or “after”. To answer this, we cre-
ate synthetic audio-text pairs to augment the data for these prepo-
sitions. We take the 19k sentences in the AudioCaps training set


https://spacy.io/

‘ “Before” “After” “Then”  “Followed by”

PTe | 185 (1.8%) 105 (1.0%) 1205 (11.7%) 1279 (12.4%)
Tr | 1036 (0.8%) 1071 (0.9%) 8177 (6.6%) 8321 (6.8%)

Table 4. Top: Number of sentences in the preposition test set (PTe)
containing each preposition, with the % it represents of the full test-
set in parenthesis. Bottom: the same distribution for the pre-training
set (Tr), with the % it represents of the pre-training set in parenthesis.

Original vs Swap

0.5 0.486
- 0.4050-419
®0.4 %
~a .351
Original /¢
7
0.3 2 Swap ié
MLP Transformer

Fig. 2. R@1 on the preposition test set (PTe) for the baseline (MLP)
and our proposed model (Transformer). Lined bars show results us-
ing the original sentences in PTe as queries, and solid orange bars
show results after swapping the clauses before/after the preposition.

that do not already contain the prepositions in PTe and use them to
create new sentences: we randomly select two sentences, treat them
as sub-clauses, and concatenate them with a preposition in between
(e.g., “(sentence A) before (sentence B)”). We concatenate the au-
dio clips associated with each sentence in the order indicated by the
chosen preposition with a 1 s cross-fade. We generate 50k such
pairsﬂ referred to as AudioCaps-BeforeAfter (ACBA), and create
a new pre-training set (+ACBA) by adding them to the 123k existing
pre-training pairs.

The results of pre-training the baseline (MLP) and our proposed
model (Transformer) on +ACBA and evaluating them on BAT are
plotted as solid green bars in Figure 3] The performance of our
Transformer model is notably boosted by 13 points, strengthening
the evidence that it can model temporal ordering in the text and au-
dio. It is also a clear indication that the existing pre-training data are
insufficient for teaching audio-text models about sound event order-
ing. Even with the additional ACBA sentences, the baseline (MLP)
is still equivalent to a random guess (51%), supporting our conjec-
ture of an inherent limitation in the architecture.

Finally, we compare our Transformer-based architecture to
the baseline (MLP) on the original language-based audio retrieval
benchmarks, trained on either our original pre-training set or the aug-
mented set +ACBA, presented in Table 5] Surprisingly, in contrast
to our prior experiments, the baseline outperforms the Transformer,
even when we add the ACBA training data. One hypothesis is that
the Transformer is still under trained: its performance improves
with the addition of ACBA, so it is plausible it will improve further
with more data. A second is that since sentences with prepositions
represent a only small percentage of the test data in existing bench-
marks, the benefits of the Transformer for sequence modeling do not
come to light here. This highlights the limitations of existing open
datasets for training and evaluating audio-text models. With larger
and more complex training sets, and test sets that require the model

3github.com/hohsiangwu/preposition-synthesis
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Fig. 3. Performance on the Before and After Test (BAT) set for
the baseline (MLP) and our proposed model (Transformer). Mod-
els trained either on the original pre-training set (dotted bars) or the
augmented +ACBA set (solid green bars). Performance measured
as % of test samples for which the original text query is closer to
the corresponding audio than the manipulated text (50% = random
guess).

Agg/Proj Data \ AudioCaps  Clotho  Clotho 2022
MLP Original 0.798 0.505 0.477
Transformer  Original 0.685 0.414 0.393
MLP +ACBA 0.790 0.500 0.473
Transformer +ACBA 0.730 0.425 0.405

Table 5. R@10 for the baseline model (MLP) and the proposed
Transformer-based model (Transformer). Top: results when training
with the original pre-training set (Original). Bottom: results when
training on the augmented pre-training set which includes the addi-
tional 50k ACBA sentences.

to leverage natural language to a greater extent, we think it is likely
the Transformer will surpass the baseline, in accordance with our
other experiments.

4. CONCLUSION

Contrastive learning for the audio and text modalities holds the
promise of unlocking powerful applications such as language-based
audio retrieval, zero-shot audio classification and open-vocabulary
sound event detection. In this work we presented several ex-
periments aimed at understanding the capabilities of current top-
performing audio-text models. We showed that despite being trained
on audio-text pairs where the text is natural language sentences,
these architectures fail to fully leverage the information in the natu-
ral language signal: they cannot capture concepts such as simultane-
ity and event ordering, and models trained on text limited to nouns
and verbs perform equally well as those trained on full sentences.
To alleviate these limitations we proposed a Transformer-based
architecture and showed that, given sufficient training data and a
benchmark designed to probe the model’s ability to capture event
ordering, it outperforms the baseline considerably. Conversely, it
does not outperform the baseline on the existing benchmarks, sug-
gesting they are not well suited for understanding the audio-text
model’s abilities to capture more complex relationships between
natural language and the audio signal. To reach the multi-modal un-
derstanding capabilities shown for other modalities [1]], we advocate
for the creation of significantly larger datasets with ample represen-
tation of audio-text pairs that describe complex relationships such as
sound event simultaneity and sound event ordering.
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