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ABSTRACT

Mobile Edge Caching (MEC) is a revolutionary technology for the
Sixth Generation (6G) of wireless networks with the promise to sig-
nificantly reduce users’ latency via offering storage capacities at the
edge of the network. The efficiency of the MEC network, however,
critically depends on its ability to dynamically predict/update the
storage of caching nodes with the top-K popular contents. Conven-
tional statistical caching schemes are not robust to the time-variant
nature of the underlying pattern of content requests, resulting in a
surge of interest in using Deep Neural Networks (DNNs) for time-
series popularity prediction in MEC networks. However, existing
DNN models within the context of MEC fail to simultaneously cap-
ture both temporal correlations of historical request patterns and the
dependencies between multiple contents. This necessitates an ur-
gent quest to develop and design a new and innovative popularity
prediction architecture to tackle this critical challenge. The paper
addresses this gap by proposing a novel hybrid caching framework
based on the attention mechanism. Referred to as the parallel Vision
Transformers with Cross Attention (ViT-CAT) Fusion, the proposed
architecture consists of two parallel ViT networks, one for collecting
temporal correlation, and the other for capturing dependencies be-
tween different contents. Followed by a Cross Attention (CA) mod-
ule as the Fusion Center (FC), the proposed ViT-CAT is capable of
learning the mutual information between temporal and spatial cor-
relations, as well, resulting in improving the classification accuracy,
and decreasing the model’s complexity about 8 times. Based on the
simulation results, the proposed ViT-CAT architecture outperforms
its counterparts across the classification accuracy, complexity, and
cache-hit ratio.

Index Terms— Mobile Edge Caching, Popularity Prediction,
Deep Neural Networks, Vision Transformer, Cross-Attention.

1. INTRODUCTION
The phenomenal growth in demand for mobile wireless data ser-
vices, together with the emergence of advanced Internet of Things
(IoT) applications bring new technical challenges to wireless com-
munications. According to Ericsson’s mobility report [1], global
mobile data traffic is projected to exponentially grow from 67 ex-
abytes/month in 2021 to 282 exabytes/month in 2027. To accommo-
date the huge amount of mobile data traffic, Mobile Edge Caching
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(MEC) [2–5] has emerged as a promising solution for potential de-
ployment in the Sixth Generation (6G) of communication networks.
MEC networks provide low-latency communication for IoT devices
by storing multimedia contents in the storage of nearby caching
nodes [6, 7]. The limited storage of caching nodes, however, makes
it impossible to preserve all contents on nearby devices. To tackle
this challenge, predicting the most popular content is of paramount
importance, as it can significantly influence the content availability
in the storage of caching nodes and reduce users’ latency.

Existing popularity prediction solutions are typically developed
based on statistical models [6–10], Machine Learning (ML)-based
architectures [11–14], and Deep Neural Networks (DNNs) [15–24],
among which the latter is the most efficient one for popularity pre-
diction. This is mainly due to the fact that DNN-based models can
capture users’ interests from raw historical request patterns without
any feature engineering or pre-processing. In addition, DNN-based
popularity prediction models are not prone to sparsity and cold-start
problems with new mobile user/multimedia contents. As a result, re-
cent research has shifted its primary attention to DNN-based frame-
works to monitor and forecast the popularity of content using its his-
torical request pattern. A critical aspect of a DNN-based popularity
prediction architecture is its ability to accurately capture both tempo-
ral and spatial correlations within the time-variant request patterns of
multiple contents. While the temporal correlation illustrates the vari-
ation of users’ preferences over time, spatial correlation reflects the
dependency between different multimedia contents. The majority of
works in this field [18–21], however, are not appropriately designed
to simultaneously capture both dependencies. This necessitates an
urgent quest to develop and design a new and innovative popularity
prediction architecture, which is the focus of this paper.

Literature Review: Recently, a variety of promising strategies have
been designed to forecast the popularity of multimedia contents with
the application to MEC networks. In [25], an auto-encoder architec-
ture was proposed to improve content popularity prediction by learn-
ing the latent representation of historical request patterns of contents.
To boost the decision-making capabilities of caching strategies, Re-
inforcement Learning (RL) [26, 27] and Convolutional Neural Net-
work (CNN) [28]-based caching frameworks were introduced to ex-
ploit the contextual information of users. Despite all the benefits
that come from the aforementioned works, they relied on a common
assumption that the content popularity/historical request patterns of
contents would remain unchanged over time, which is not applicable
in highly dynamic practical systems.
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To capture the temporal correlation of historical request pat-
terns of contents, several time-series-based DNN caching strate-
gies [18, 29] were introduced, among which Long Short Term
Memory (LSTM) [19,24] is one of the most effective learning mod-
els. LSTM, however, suffers from computation/time complexity,
unsuitability to capture long-term dependencies, parallel computing,
and capturing dependencies between multiple contents. To take into
account the correlation among historical request patterns of various
contents, a Clustering-based LSTM (C-LSTM) model [30] was pro-
posed to predict the number of content requests in the upcoming
time. C-LSTM framework, however, is still prone to computa-
tion/time complexity, and parallel computing issues. To tackle the
aforementioned challenges, Transformer architectures [31] have
been developed as a time-series learning model, while the sequential
data need not be analyzed in the same order, resulting in less training
complexity and more parallelization. There has been a recent surge
of interest in using Transformers in various applications [31–33].
The paper aims to further advance this emerging field.
Contribution: A crucial aspect of Transformers that has a signifi-
cant deal of potential for widespread implementation in various Arti-
ficial Intelligence (AI) applications is the self-attention mechanism.
In our prior work [15], we have shown the superiority of the Vision
Transformer (ViT) architecture in comparison to LSTM for the task
of predicting the Top-K popular contents. The input of the standard
Transformer is a 1D sequence of token embeddings. To predict the
popularity of multiple contents at the same time, we use 2D images
as the input of the ViT network, where each column of the image is
associated with the historical request pattern of one content. Gener-
ally speaking, 2D input samples are split into fixed-size patches in
the ViT architecture. To help the ViT network to capture not only
the temporal correlation of historical request pattern of contents, but
also the dependencies between multiple contents, we provide a par-
allel ViT network, where 2D input samples split to different types
of patches, i.e., time-based patches, and content-time-based patches.
Referred to as the parallel Vision Transformers with Cross Attention
(ViT-CAT) Fusion, the proposed architecture consists of two paral-
lel ViT networks (one Time-series Self-attention (TS) path, and one
Multi-Content self-attention (MC) path), followed by a Cross Atten-
tion (CA) as the fusion center. The CA network is used to effec-
tively fuse multi-scale features obtained from TS and MC networks
to improve the overall performance of the ViT-CAT classification
task. Simulation results based on the real-trace of multimedia re-
quests illustrate that the proposed ViT-CAT architecture outperforms
the conventional ViT network and other state-of-the-art counterparts
in terms of the cache-hit ratio, classification accuracy, and training
complexity. The rest of the paper is organized as follows: Section 2
presents the proposed ViT-CAT architecture. Simulation results are
presented in Section 3. Finally, Section 4 concludes the paper.

2. PROPOSED VIT-CAT ARCHITECTURE
In this section, the MovieLens Dataset [34] is briefly introduced,
followed by describing the dataset pre-processing method. The pro-
posed ViT-CAT popularity prediction model, which is designed to
predict the Top-K popular content, will be explained afterward.

2.1. Dataset Pre-processing
MovieLens is a dataset provided by recommender systems, con-
sisting of users’ contextual and geographical information, in which
commenting on a content is treated as a request [19]. To predict the
Top-K popular content, the following four steps are performed to
convert MovieLens dataset to 2D input samples.
Step 1 - Request Matrix Formation: First the dataset is sorted in
the ascending order of time for all contents cl, for (1 ≤ l ≤ Nc).

Consequently, an (T × Nc) indicator request matrix is generated,
where T denotes the total number of timestamps, and Nc is the total
number of distinct contents, where rt,l = 1, if content cl is requested
at time t.
Step 2 - Time Windowing: Relying on a common assumption
that the most popular contents will be cached during the off-peak
time [35], it is unnecessary to predict the content popularity at each
timestamp. Accordingly, we define an (NW × Nc) window-based
request matrix, denoted by R(W), where NW = T

W represents the
number of time windows with the length of W , where W is the
time interval between two consecutive updating times. For instance,

r
(w)
tu,l =

tuW∑
t=(tu−1)W+1

rt,l represents the total number of requests of

content cl between two updating times tu − 1 and tu.
Step 3 - Data Segmentation: To generate 2D input samples, the
window-based request matrix R(W) is segmented via an overlap-
ping sliding window of length L. Accordingly, the modified dataset,
denoted by D = {(Xu, yu)}

M
u=1 is prepared, where M is the total

number of input samples. Term Xu ∈ RL×Nc is 2D input samples,
representing the request patterns of all contents before updating time
tu with the length of L. Finally, the term yu ∈ RNc×1 represents

the corresponding labels, where
Nc∑
l=1

yu(l) = K, with K denoting

the storage capacity of caching nodes. Note that yu(l) = 1 indicates
that content cl would be popular at tu+1, otherwise it would be zero.
Next, we describe the data labeling method.
Step 4 - Data Labeling: Given the historical request patterns of con-
tents Xu as the input of the ViT-CAT architecture, we label contents
as popular and non-popular, according to the following criteria:

i) Probability of Requesting a Content: Probability of request-
ing content cl, for (1 ≤ l ≤ Nc), at updating time tu, is

obtained by p(tu)
l =

r
(w)
l,tu

Nc∑
l=1

r
(w)
l,tu

.

ii) Skewness of the Request Pattern: The skewness of the request
pattern of content cl, for (1 ≤ l ≤ Nc), is denoted by ζl,
where negative skew indicates the ascending request pattern
of content cl over time.

Accordingly, the Top-K popular contents will be labeled with yu,l =
1, where cl for (1 ≤ l ≤ K) has negative skew and the highest prob-
ability. This completes the presentation of data preparation. Next,
we present the proposed ViT-CAT architecture.

2.2. ViT-CAT Architecture
In this subsection, we present different components of the proposed
ViT-CAT architecture, which is developed based on the attention
mechanism. As shown in Fig. 1(a), the ViT-CAT architecture con-
sists of two parallel paths, named Time-Series (TS)-path and Multi-
Content (MC)-path, performed based on self-attention mechanism,
followed by a Cross-Attention (CA) module as the fusion layer.

A. Patching
Generally speaking, the input of the Transformer encoder in the ViT
network is a sequence of embedded patches, consisting of patch
embedding and positional embedding. In this regard, the 2D in-
put samples Xu is split into N non-overlapping patches, denoted
by Xu,p = {xi

u,p}Ni=1. As can be seen from Fig. 1(a), we apply two
following patching methods for TS-path and MC-path:

i) Time-based Patching: To capture the temporal correlation of
contents, we use time-based patching for the TS-path, where



Fig. 1. (a) Block diagram of the proposed ViT-CAT architecture, (b) Pipeline of the ViT architecture, and the Transformer encoder.

the size of each patch is S = L × 1. More precisely, time-
based patching separately focuses on the request pattern of
each content for a time sequence with a length of L, where
the total number of patches isN = (L×Nc)/(L×1) = Nc,
which is the total number of contents.

ii) Content and Time-based Patching: In the MC-path, the main
objective is to capture the dependency between all Nc con-
tents for a short time horizon Ts, therefore, we set the size of
each patch to S = Ts ×Nc, where the number of patches is
N = (L×Nc)/(Ts ×Nc) = L/Ts, with Ts � L.

B. Embedding
Each patch is flattened into a vector xp

u,j ∈ RN×S for (1 ≤ j ≤ N ).
Referred to as the patch embedding, a linear projection E ∈ RS×d

is used to embed vector xp
u,j into the model’s dimension d. Then, a

learnable embedding token xcls is added to the beginning of the em-
bedded patches. Finally, to encode the order of the input sequences,
the position embedding Epos ∈ R(N+1)×d, is appended to the patch
embedding, where the final output of the patch and position embed-
dings, denoted by Z0, is given by

Z0 = [xcls;xp
u,1E;xp

u,2E; . . . ;xp
u,NE] +Epos. (1)

C. Transformer Encoder
As shown in Fig. 1(b), the Multi-Layer Perceptron (MLP) module,
consisting of two Linear Layers (LL) with Gaussian Error Linear
Unit (GELU) activation function, and the Multihead Self-Attention
(MSA) block, are two modules that comprise each layer of the Trans-
former encoder [31], where the total number of layers is denoted by
NL. Given the sequence of vectors Z0 as the input of the Trans-
former encoder, the outputs of the MSA and MLP modules of layer
L, for (1 ≤ L ≤ NL), are represented by

Z
′
L = MSA(LayerNorm(ZL−1)) +ZL−1, (2)

ZL = MLP (LayerNorm(Z
′
L)) +Z

′
L, (3)

where the degradation issue is addressed via a layer-normalization.
Finally, the output of the Transformer, denoted by Zo

L, is given by

Zo
L = [zL0; zL1; . . . ; zLN ], (4)

where zL0, which is provided to an LL module, is utilized for the
classification task, as follows

y = LL(LayerNorm(zL0)). (5)

This completes the description of the Transformer encoder. Next, we
briefly explain the SA, MSA, and CA modules, respectively.

1. Self-Attention (SA): To capture the correlation between different
parts of the input sample, the SA module is used [31], where the
input of the SA module is embedded vectors Z ∈ RN×d, where Z
consists of N vectors with an embedding dimension of d. In this
regard, Query Q, Key K, and Value V matrices with dimension of
dh are defined as

[Q,K,V ] = ZWQKV , (6)

where WQKV ∈ Rd×3dh is a trainable weight matrix. After mea-
suring the pairwise similarity between each query and all keys, the
output of the SA block SA(Z) ∈ RN×dh , which is the weighted
sum over all values V , is obtained by

SA(Z) = softmax(
QKT

√
dh

)V , (7)

where the scaled similarity is converted to the probability using

softmax, and
QKT

√
dh

represents the scaled dot-product of Q and K

by
√
dh.

2. Multihead Self-Attention (MSA): The primary objective of the
MSA module is to pay attention to input samples from various rep-
resentation subspaces at multiple spots. More precisely, the MSA
module consists of h heads with different trainable weight matrices



Table 1. Variants of the ViT-CAT Architecture.

Model ID Layers Model dimension d MLP layers MLP size Heads Params Accuracy

1 1 25 1 128 5 201,188 84.35 %

2 1 50 1 128 5 435,788 94.77%

3 1 50 1 128 4 415,488 80.35 %

4 1 50 1 64 5 342,793 93.49 %

5 1 50 2 64 5 435,788 94.82%

6 2 50 1 128 5 568,185 94.84 %

{WQKV
i }hi=1, performed h times in parallel. Finally, the outputs

of h heads are concatenated into a single matrix and multiplied by
WMSA ∈ Rhdh×d, where dh is set to d/h. The output of the MSA
module is, therefore, given by

MSA(Z) = [SA1(Z);SA2(Z); . . . ;SAh(Z)]WMSA. (8)

3. Cross-Attention (CA): The CA module is the same as the SA
block, except that the Query Q, Key K, and Value V are obtained
from different input features as shown in Fig. 1(a). More precisely, to
learn the mutual information between TS and MC paths, the Query
Q comes from the output features of TS-path, while Key K, and
Value V are obtained from the output features of the MC-path. This
completes the description of the proposed ViT-CAT architecture.

3. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed ViT-
CAT architecture through a series of experiments. Given the users’
ZIP code in Movielens dataset [28], we assume there are six caching
nodes, where the classification accuracy is averaged over all caching
nodes. In all experiments, we use the Adam optimizer, where the
learning and weight decay are set to 0.001 and 0.01, respectively,
and binary cross-entropy is used as the loss function for the multi-
label classification task. In Transformers, the MLP layers’ activation
function is ReLU, whereas their output layer’s function is sigmoid.
Effectiveness of the ViT-CAT Architecture: In this subsection, dif-
ferent variants of the proposed ViT-CAT architecture are evaluated
to find the best one through trial and error. According to the re-
sults in Table 1, increasing the MLP size from 64 (Model 4) to 128
(Model 1), the model dimension from 25 to 50 (Model 1 to Model
2), the number of MLP layers from 64 to 128 (Models 4 and 5), the
number of heads from 4 to 5 (Models 2 and 3), and the number of
Transformer layers from 1 (Model 2) to 2 (Model 6) increase the
classification accuracy, while increasing the number of parameters.
Effect of the Fusion Layer: In this experiment, to illustrate the
effect of the CA module on classification accuracy, we evaluate the
effect of the fusion layer in the proposed ViT-CAT architecture with
other baselines, where the parallel ViT architecture in all networks
is the same (Model 2). In this regard, we consider two fusion layers,
i.e., the Fully Connected (FL) and the SA layers. According to the
results in Table 2, the CA module outperforms the others, since it
captures the mutual information between two parallel networks.
Performance Comparisons: Finally, we compare the performance
of the proposed ViT-CAT architecture in terms of the cache-hit ra-
tio with other state-of-the-art caching strategies, including LSTM-
C [19], TRansformer (TR) [36], ViT architecture [15], and some
statistical approaches, such as Least Recently Used (LRU), Least

Table 2. Classification accuracy using different fusion networks.

Model CA FC SA

Accuracy 94.77% 92.58 % 79.93 %

Parameters 435,788 417,171 400,788

Fig. 2. Comparison with state-of-the-arts based on the cache-hit ratio.
Frequently Used (LFU), PopCaching [37]. With the assumption that
the storage capacity of caching nodes is 10% of total contents [6], a
high cache-hit ratio illustrates that a large number of users’ requests
are managed through the caching nodes. According to the results
in Fig. 2, the proposed ViT-CAT architecture outperforms its state-
of-the-art counterparts in terms of the cache-hit ratio. As shown in
Fig. 2, the optimal strategy, which cannot be attained in a real sce-
nario, is one in which all requests are handled by caching nodes. In
addition, we compare the proposed ViT-CAT framework with a sin-
gle ViT network [15], in terms of accuracy and complexity. It should
be noted that the highest accuracy of the ViT-CAT model is 94.84%
with 568, 185 number of parameters, while in a single ViT network,
the best performance occurs with 93.72% accuracy and 4, 044, 644
number of parameters.

4. CONCLUSION

In this paper, we presented a parallel Vision Transformers with Cross
Attention (ViT-CAT) Fusion architecture to predict the Top-K pop-
ular contents in Mobile Edge Caching (MEC) networks. To capture
the temporal correlation and the dependency between multiple con-
tents, we employed two parallel ViT networks, followed by a Cross
Attention (CA), which was used to learn the mutual information be-
tween two networks. Simulation results showed that the proposed
ViT-CAT architecture improved the cache-hit ratio, classification ac-
curacy, and complexity when compared to its state-of-the-art.
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