
Online Model Compression for Federated Learning with Large Models

Tien-Ju Yang, Yonghui Xiao, Giovanni Motta, Françoise Beaufays, Rajiv Mathews, Mingqing Chen

Google LLC, Mountain View, CA, U.S.A.
{tjy,yohu,giovannimotta,fsb,mathews,mingqing}@google.com

Abstract
This paper addresses the challenges of training large neu-

ral network models under federated learning settings: high on-
device memory usage and communication cost. The proposed
Online Model Compression (OMC) provides a framework that
stores model parameters in a compressed format and decom-
presses them only when needed. We use quantization as the
compression method in this paper and propose three methods,
(1) using per-variable transformation, (2) weight matrices only
quantization, and (3) partial parameter quantization, to mini-
mize the impact on model accuracy. According to our exper-
iments on two recent neural networks for speech recognition
and two different datasets, OMC can reduce memory usage and
communication cost of model parameters by up to 59% while
attaining comparable accuracy and training speed when com-
pared with full-precision training.
Index Terms: federated learning, speech recognition, deep
learning, neural network

1. Introduction
Federated learning (FL) [1, 2] allows training neural network
models directly on edge devices (referred to as clients) instead
of transferring their data back to a server for centralized training
to preserve users’ privacy. FL is composed of multiple federated
rounds. In a standard federated round, a server model is first
transported to clients. Then, the clients train the model on their
local data. The trained models are finally transported back to
the server and aggregated to improve the server model. This
process is repeated until the server model converges.

FL involves on-device training and model transportation be-
tween servers and clients, which lead to two main challenges.
The first challenge is that edge devices usually have limited
memory available for training. Given the fact that recent Auto-
matic Speech Recognition (ASR) models typically contain hun-
dreds of millions of parameters or more [3], keeping these pa-
rameters in full precision in memory may exceed the available
memory. Although there is a significant effort in the field on
reducing memory usage of parameters during inference, such
as quantization-aware training [4, 5], it is usually at the cost of
higher memory usage during training. Reducing the memory
usage of parameters during training with FL is less explored.
The second challenge is the high communication cost. Commu-
nication can be much slower than computation [6], and trans-
porting models in full precision also burdens the communica-
tion network.

In this paper, we propose Online Model Compression
(OMC) to address the above challenges of on-device FL. Differ-
ent from regular full-precision FL, where each client keeps, up-
dates, and transports full-precision parameters, OMC keeps and
transports the parameters in a compressed format. During train-
ing, when an operation needs the value of a compressed param-
eter, OMC decompresses it on-the-fly and deallocates memory

for the decompressed value immediately after it is consumed.
Therefore, OMC only keeps the compressed parameters and a
small number of transient decompressed parameters in memory,
which uses less memory than the full-precision parameters.

The main design challenge of OMC is achieving a favor-
able accuracy-efficiency trade-off. An important characteristic
of OMC is that compression and decompression occur in every
training iteration. As a result, the error introduced by compres-
sion can accumulate very quickly and degrade model accuracy
significantly. On the other hand, we cannot use a very compli-
cated algorithm to control the accumulated error because this
will significantly slow down training. Therefore, OMC needs
to be as simple and fast as possible and has a minimal impact
on accuracy. It achieves this goal by using quantization, per-
variable transformation, weight matrices only quantization, and
partial parameter quantization.

The following summarizes the benefits of OMC:
• Reducing memory usage: There are three main sources

of memory usage: model parameters, activations, and
gradients. OMC aims to reduce the memory usage of
model parameters.

• Reducing communication cost: Because models are
transported between servers and clients, reducing the
model size helps reduce communication cost.

• Lightweight operation: OMC does not significantly
slow down the training process even though compression
and decompression occur frequently.

2. Methodology
2.1. Framework of Online Model Compression

Fig. 1 illustrates the framework of the proposed Online Model
Compression (OMC). OMC stores parameters in a compressed
format, such as floating-point numbers with reduced bitwidths,
but performs computations in full precision or other hardware-
supported formats. This design decouples compression formats
and hardware-supported formats to provide higher flexibility for
choosing the compression format and method to achieve better
memory usage reduction.

When performing forward propagation for a layer (the blue
path in Fig. 1), OMC decompresses the required parameters for
that layer on the fly and deallocates the decompressed copies
immediately after they are consumed. When performing back-
ward propagation for a layer (the red path in Fig. 1), OMC de-
compresses the required parameters and applies the gradients to
update them. The updated decompressed parameters are then
compressed and discarded immediately. Therefore, OMC only
keeps the compressed parameters and a small number of tran-
sient decompressed copies in memory.

2.2. Quantization-Based Online Model Compression

Given the simplicity of quantization, we adopt it as the compres-
sion method in this paper. Quantization reduces the number of

ar
X

iv
:2

20
5.

03
49

4v
1

 [
cs

.L
G

]
 6

 M
ay

 2
02

2

Decompress

Compress

Consume

Update

Decompress
Layer N

Forward
Prop.

Backward
Prop.

Transient

Transient

In
Memory

Figure 1: The illustration of the framework of the proposed on-
line model compression. The cubes with dashed borderlines are
transient variables.

bits (i.e., bitwidth) for representing a value. While full precision
(32 bits) is usually used in deep learning, many works in the lit-
erature have shown that neural networks are error-resilient and
allow using much lower bitwidths, such as 1 to 8 bits, without
harming prediction accuracy [5]. However, such low bitwidths
are usually achieved for inference. Reducing memory usage by
quantization during training is more difficult because training
requires more bits to precisely accumulate the small gradients
across training iterations.

OMC adopts the floating-point format in this paper as an
example although other formats, such as the fixed-point format,
can also be used. The floating-point format consists of three
parts: the sign bits, the exponent bits, and the mantissa bits. For
example, the format of FP32 (32-bit single-precision floating-
point format) is composed of 1-bit sign, 8-bit exponent, and
23-bit mantissa. To quantize a floating-point value, we reduce
the numbers of bits for the exponent and the mantissa, which
are the two hyper-parameters of floating-point quantization.

2.3. Per-Variable Transformation

Quantization is a lossy operation and thus, introduces quanti-
zation errors. As a result, quantizing parameters every training
iteration can lead to a large accumulated error and prevent us
from using fewer bits with the original accuracy maintained. To
minimize the quantization error, OMC applies a linear transfor-
mation on the decompressed parameters, which is illustrated in
Fig. 2. This step is performed per variable, such as per weight
matrices, so that all the model parameters in a variable can share
a few transformation-related parameters to make the memory
overhead negligible.

The transformed variable (vector or flattened tensor) V̄ ∈
Rn can be written as V̄ = sṼ +b1, where Ṽ ∈ Rn denotes the
decompressed variable, 1 ∈ Rn is a one vector, and s and b de-
note the per-variable scaling factor and bias, respectively. OMC
determines the scaling factor and the bias analytically by mini-
mizing the `2-norm of the difference between the decompressed
and transformed variable (V̄) and the full-precision variable be-
fore compression (V ∈ Rn). The closed-form solutions are

s =
n
∑

k VkṼk −
∑

k Vk

∑
k Ṽk

n
∑

k V
2
k − (

∑
k Ṽk)2

,

b =
n
∑

k Vk − s
∑

k Ṽk

n
,

where Vk denotes the k-th element of V . Note that the degen-
erated case is when the denominator of s is 0, which happens

Layer NV̅Ṽ

Decompress

Transform

Consume

V

Compress

Figure 2: The illustration of per-variable transformation. The
cubes with dashed borderlines are transient variables.

(only) when all elements in each of V and Ṽ are the same ac-
cording to inequality of arithmetic and geometric means. We
set s to 1.0 for this degenerated case. In our implementation,
s and b are computed in the 64-bit floating-point precision, but
the final s and b are still stored as FP32 values.

2.4. Weight Matrices Only Quantization

We empirically found that some types of parameters are more
sensitive to quantization than the others. These sensitive pa-
rameters include the scaling factors and biases in normalization
layers. In contrast, weight matrices in convolutional and feed-
forward layers are less sensitive to quantization but dominate
the model size. For example, the weight matrices in the stream-
ing Conformer model we use in Sec. 3 accounts for 99.8% of
the model size. Hence, OMC only quantizes weight matrices
and keeps the remaining variables in FP32. This method helps
maintain accuracy while saving a large amount of memory.

2.5. Partial Parameter Quantization

OMC also leverages the feature of federated learning that there
are many clients training a model in parallel to further reduce
quantization errors. This feature provides an opportunity to
quantize only a subset of parameters for each client and vary
the selection from one client to another. As a result, the server
can receive high-quality and precise update of each parameter
from the clients that do not quantize this parameter.

3. Experimental Results
3.1. Experimental Settings

In this section, we validate and demonstrate the effectiveness
of OMC across various use cases, including small and large
datasets, IID and non-IID data distributions, streaming and non-
streaming network architectures, and from-scratch and domain-
adaptation training settings.

The first dataset is the LibriSpeech dataset [7]. By partition-
ing LibriSpeech in two different ways, we derive the IID Lib-
riSpeech and the Non-IID LibriSpeech dataset from the original
LibriSpeech dataset to simulate different client data distribu-
tions. IID LibriSpeech is generated by random partition while
Non-IID LibriSpeech is generated by partitioning by speakers.
For LibriSpeech related experiments, the models are trained
from scratch. The Word Error Rates (WERs) will be reported in
the format of dev/dev-other/test/test-other, where each item cor-
responds to the WER of the dev, dev-other, test, and test-other
set from left to right.

The second dataset is an anonymized Multi-Domain (MD)
dataset and much larger than LibriSpeech. The MD dataset con-
tains around 400K hours of utterances from domains such as
YouTube, farfield, search, and telephony [8, 9]. We partition
this dataset into the Medium Form (MF) domain dataset and
the Non-MF domain dataset. These two partitions will be used
to evaluate OMC under the domain adaptation scenario (from

WERs Resource
Parameter Memory / Communication Speed (Rounds/Min)

FP32 (S1E8M23) 2.1/4.6/2.2/4.8 474MB (100%) 29.5 (100%)
OMC (S1E4M14) 2.1/4.7/2.2/4.6 301MB (64%) 26.8 (91%)

Table 1: The results of Non-Streaming Conformer on IID LibriSpeech.

WERs Resource
Parameter Memory / Communication Speed (Rounds/Min)

Before Adaptation 6.7 - -
FP32 (S1E8M23) 4.6 548MB (100%) 11.9 (100%)
OMC (S1E3M7) 4.6 224MB (41%) 11.1 (93%)
OMC (S1E2M3) 5.9 147MB (29%) -

Table 2: The results of Streaming Conformer on the Multi-Domain dataset. The WER is on the MF domain.

Non-MF domain to MF domain). For MD related experiments,
a model will be first trained on the Non-MF domain dataset and
then finetuned on the MF domain dataset. The WERs are re-
ported on a disjoint test set from the MF domain.

We also experiment with two ASR models to evaluate OMC
under non-streaming and streaming use cases. The first model is
similar to the largest Conformer in the paper [3]. The only dif-
ference is that we replace batch normalization by group normal-
ization, which is more suitable for federated learning at a small
degradation in accuracy [10]. We refer to this model as Non-
streaming Conformer. The second model is our production-
grade Conformer variant [11], which contains approximately
130M trainable parameters and supports streaming use cases.
We refer to this model as streaming Conformer.

Unless otherwise specified, we randomly quantize 90% of
the weight matrices and vary the selection from round to round
and from client to client. There are 128 clients, and each client
trains a model with 1 local step. The batch size is 16 per client.
For resource consumption, we report the theoretical memory
usage of parameters, the communication cost, and the training
speed on TPUs. The memory saving observed in practice with
our implementation is also provided in Sec. 3.4. We use SxEyMz
to represent a floating-point format with x sign bits, y exponent
bits and z mantissa bits. For example, the FP32 format is repre-
sented by S1E8M23.

3.2. Non-Streaming Conformer on LibriSpeech

Table 1 summarizes the results of Non-Streaming Conformer on
IID LibriSpeech. Compared with FP32 (S1E8M32), OMC can
achieve similar WERs with 64% memory usage of parameters
and communication cost by using the 19-bit S1E4M14 format.
OMC is also pretty lightweight. In this experiment, OMC only
decreases the speed by 9%.

Table 3 summarizes the WERs of Non-Streaming Con-
former on Non-IID LibriSpeech with the same bitwidth as that
of the IID LibriSpeech experiment. Even with non-IID data,
OMC can still attain comparable WERs to using FP32. The
reduction in memory usage of parameters and communication
cost is the same as the previous IID experiment and, hence,
omitted in Table 3. These experiments show the versatility of
OMC to work well with both IID and non-IID data distribution.

3.3. Streaming Conformer on Multi-Domain Dataset

We observe that domain adaptation may allow using a smaller
bitwidth than from-scratch training. Table 2 summarizes the
results of Streaming Conformer on the Multi-Domain dataset.

FP32 (S1E8M23) OMC (S1E4M14)
WER 2.0/4.7/2.2/4.9 2.0/4.8/2.2/4.9

Table 3: The WERs of Non-Streaming Conformer on Non-IID
LibriSpeech.

Compared to FP32, OMC can achieve similar WERs with 41%
memory usage of parameters and communication cost by using
the 11-bit S1E3M7 format. We can further reduce the bitwidth
to 6 bits (S1E2M3) and still improve the WERs over the before-
adaptation baseline. Moreover, OMC only has a negligible im-
pact on the training speed, by 7% in this case.

3.4. Measured Memory Usage on Pixel 4 Phones

In this section, we measured the memory usage on Google Pixel
4 with parameters quantized to FP16 (S1E5M10). We imple-
mented federated learning with Tensorflow Federated [12] and
applied gradient recomputation [13] to force releasing the mem-
ory occupied by transient parameters. The code has been up-
loaded to the Lingvo [14, 15] repository on Github. For the
Streaming Conformer, OMC reduces the peak memory usage
by 197 MB (38% of the model size). For a smaller Stream-
ing Conformer model with 3 Conformer blocks in the encoder,
OMC reduces the peak memory usage by 84 MB (45% of the
model size).

3.5. Ablation Study

In the ablation study, we use Streaming Conformer on Multi-
Domain dataset as the study target unless otherwise specified.

3.5.1. Impact of Proposed Methods

We start from studying the impact of each of the proposed meth-
ods on WERs. The results are summarized in Table 4. After we
quantize the parameters to 11 bits (S1E3M7), the WER signif-
icantly increases by 2.3. The WER gap is first closed by the
proposed per-variable transformation, which reduces the WER
by 0.4. Then, the proposed weight matrices only quantization
reduces the WER by another 1.8. Finally, the proposed par-
tial parameter quantization brings down the WER to 4.6, which
matches the FP32 baseline.

3.5.2. Per-Variable Transformation for From-Scratch Training

In the previous section, we showed the effectiveness of the pro-
posed per-variable transformation for domain adaptation. We
found that per-variable transformation is even more critical for

Quantization
(S1E3M7)

Per-Variable
Transformation

Weights
Only

90%
Weights WER

4.6
X 6.9
X X 6.5
X X X 4.7
X X X X 4.6

Table 4: The change in WER when we apply each of the pro-
posed methods sequentially.

Figure 3: The comparison between with and without using per-
variable transformation (PVT) when training Non-Streaming
Conformer on IID LibriSpeech dataset from scratch with the
S1E5M10 format.

from-scratch training. Fig. 3 shows its impact on WERs when
we train the Non-Streaming Conformer on IID LibriSpeech
dataset from scratch with the S1E5M10 format. Without ap-
plying per-variable transformation, the training is unstable. The
WER first decreases and then increases after 12000 federated
rounds. This issue is resolved by adding per-variable transfor-
mation, which helps stabilize training to make the WER keep
decreasing.

3.5.3. With and Without Partial Parameter Quantization

In the case of quantizing 90% parameters with the 11-bit format
(S1E3M7), keeping the remaining 10% parameters unquantized
increases the average bitwidth by around 2 bits. In this study,
we compare this 11-bit format with 90% parameters quantized
with various 13-bit formats with all parameters quantized. We
create these 13-bit formats by allocating the extra 2 bits to the
exponent and mantissa parts in different ways. These 13-bit
formats are S1E3M9, S1E4M8, and S1E5M7. The training re-
sults of these formats are summarized in Fig. 4. We observe
that using the proposed partial parameter quantization with 11
bits results in faster convergence than all parameter quantiza-
tion with 13 bits. Moreover, none of these 13-bit formats can
achieve a WER as low as that of partial parameter quantization
with 11 bits.

4. Related Works
Most of the related works in the literature that improve infer-
ence or training efficiency focus on centralized training. One
widely adopted approach is reducing the complexity of models,
such as manual design [16, 17], pruning [18, 19], or neural ar-
chitecture search [20, 21]. However, reducing complexity typi-
cally limits the potential of the model for continuous improve-
ment over growing data. Model transport compression [22] and
gradient transport compression [23] keep the model unchanged
and compress the transported data to save the communication
cost but with the same memory usage.

Federated Rounds

W
E

R

4.50

4.75

5.00

5.25

5.50

1000 2000 3000 4000 5000

PPQ APQ (S1E3M9) APQ (S1E4M8) APQ (S1E5M7)

Figure 4: The comparison between partial parameter quanti-
zation (PPQ) with the 11-bit format (S1E3M7) and 90% pa-
rameters quantized and all parameter quantization (APQ) with
various 13-bit formats (S1E3M9, S1E4M8, and S1E5M7) and
100% parameters quantized.

Similar to OMC, Quantization-Aware Training (QAT) [4, 5]
also quantizes parameters. The main difference is that OMC
aims to reduce memory usage during training while QAT fo-
cuses on saving memory during inference. When training a
model, QAT stores parameters in FP32 and quantizes them on
demand while OMC stores parameters in a compressed format
and decompresses them on demand. Storing parameters in FP32
allows QAT to precisely accumulate small gradients to achieve
lower bitwidths for inference at the cost of no reduction in the
memory usage of parameters during training. In contrast, stor-
ing parameters in a compressed format enables OMC to reduce
the memory usage of parameters during training but makes it
more challenging to control the quantization error and reduce
bitwidths. In this paper, we propose multiple methods to effec-
tively address this challenge.

There are a few works aiming to improve the efficiency of
federated learning. Federated dropout [24, 25] trains only part
of the server model on clients, so that the server model can
be much more complicated than client models. However, be-
cause the client models differ from the server model, federated
dropout needs to maintain a mapping between them. Similar to
federate dropout, group knowledge transfer [26] also uses dif-
ferent models on a server and clients. The clients run a small
feature extractors to extract features, which are then used to
train the server model. This approach decreases client loading
at the cost of increased server loading. Partial variable train-
ing [27] freezes parameters to reduce the memory usage of ac-
tivations and gradients and the client-to-server communication,
but the memory usage of parameters and the server-to-client
communication are not changed. Compared to the above meth-
ods, OMC can reduce both memory usage and communication
cost of parameters for federated learning without their down-
sides and can be further combined with them to achieve even
better efficiency.

5. Conclusion
In this paper, we proposed Online Model Compression to re-
duce memory usage and communication cost of model parame-
ters for federated learning. Our realization of OMC consists of
floating-point quantization, per-variable transformation, weight
matrices only quantization, and partial parameter quantization.
The experiments show that OMC is lightweight but can effec-
tively maintain accuracy with significant efficiency improve-
ment. We believe this technique will help bring state-of-the-art
ASR models onto edge devices to improve user experience.

6. References
[1] P. Kairouz, H. Brendan McMahan, B. Avent et al., “Ad-

vances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[2] J. Wang, Z. Charles, Z. Xu et al., “A field guide to federated opti-
mization,” arXiv preprint arXiv:2107.06917, 2021.

[3] A. Gulati, J. Qin, C.-C. Chiu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” in Conference
of the International Speech Communication Association (INTER-
SPEECH), 2020.

[4] M. Rastegari, V. Ordonez, J. Redmon et al., “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in Eu-
ropean Conference on Computer Vision (ECCV), 2016.

[5] A. Abdolrashidi, L. Wang, S. Agrawal et al., “Pareto-
optimal quantized resnet is mostly 4-bit,” arXiv preprint
arXiv:2105.03536, 2021.

[6] J. Huang, F. Qian, Y. Guo et al., “An in-depth study of lte: Effect
of network protocol and application behavior on performance,” in
Proceedings of the ACM SIGCOMM Conference on SIGCOMM,
2013.

[7] V. Panayotov, G. Chen, D. Povey et al., “Librispeech: An asr
corpus based on public domain audio books,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015.

[8] A. Narayanan, R. Prabhavalkar, C.-C. Chiu et al., “Recognizing
long-form speech using streaming end-to-end models,” in IEEE
Automatic Speech Recognition and Understanding Workshop,
2019. https://doi.org/10.1109/ASRU46091.2019.9003913

[9] A. Misra, D. Hwang, Z. Huo et al., “A Comparison of Supervised
and Unsupervised Pre-Training of End-to-End Models,” in Con-
ference of the International Speech Communication Association
(INTERSPEECH), 2021.

[10] K. Hsieh, A. Phanishayee, O. Mutlu et al., “The non-iid data
quagmire of decentralized machine learning,” arXiv preprint
arXiv:1910.00189, 2019.

[11] B. Li, A. Gulati, J. Yu et al., “A better and faster end-to-end model
for streaming asr,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2021.

[12] https://www.tensorflow.org/federated.

[13] T. Chen, B. Xu, C. Zhang et al., “Training deep nets with sublinear
memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[14] J. Shen, P. Nguyen, Y. Wu et al., “Lingvo: a modular and
scalable framework for sequence-to-sequence modeling,” CoRR,
vol. abs/1902.08295, 2019. http://arxiv.org/abs/1902.08295

[15] https://github.com/tensorflow/lingvo.

[16] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets: Efficient con-
volutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[17] M. Sandler, A. Howard, M. Zhu et al., “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[18] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” in International Conference on Learning Rep-
resentations (ICLR), 2016.

[19] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” in
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[20] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” in International Conference on Learning Repre-
sentations (ICLR), 2017.

[21] T.-J. Yang, Y.-L. Liao, and V. Sze, “Netadaptv2: Efficient neural
architecture search with fast super-network training and architec-
ture optimization,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[22] S. Chraibi, A. Khaled, D. Kovalev et al., “Distributed
fixed point methods with compressed iterates,” arXiv preprint
arXiv:1912.09925, 2019.

[23] J. Konečný, H. B. McMahan, F. X. Yu et al., “Federated
learning: Strategies for improving communication efficiency,” in
Advances in Neural Information Processing Systems (NeurIPS)
Workshop on Private Multi-Party Machine Learning, 2016.
https://arxiv.org/abs/1610.05492

[24] S. Caldas, J. Konečný, H. B. McMahan et al., “Expanding the
reach of federated learning by reducing client resource require-
ments,” arXiv preprint arXiv:1812.07210, 2018.

[25] D. Guliani, L. Zhou, C. Ryu et al., “Enabling on-device training
of speech recognition models with federated dropout,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2022.

[26] C. He, M. Annavaram, and S. Avestimehr, “Group knowl-
edge transfer: Federated learning of large cnns at the
edge,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020. https://proceedings.neurips.cc/paper/2020/file/
a1d4c20b182ad7137ab3606f0e3fc8a4-Paper.pdf

[27] T.-J. Yang, D. Guliani, F. Beaufays et al., “Partial variable train-
ing for efficient on-device federated learning,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022.

7. Acknowledgements
We thank Petr Zadrazil for inspiring this project and Dhruv Gu-
liani for reviewing this paper. We also thank Sean Augenstein,
Zachary Garrett and Hubert Eichner for their helpful discus-
sions on the experiments.

https://doi.org/10.1109/ASRU46091.2019.9003913
https://www.tensorflow.org/federated
http://arxiv.org/abs/1902.08295
https://github.com/tensorflow/lingvo
https://arxiv.org/abs/1610.05492
https://proceedings.neurips.cc/paper/2020/file/a1d4c20b182ad7137ab3606f0e3fc8a4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a1d4c20b182ad7137ab3606f0e3fc8a4-Paper.pdf

	1 Introduction
	2 Methodology
	2.1 Framework of Online Model Compression
	2.2 Quantization-Based Online Model Compression
	2.3 Per-Variable Transformation
	2.4 Weight Matrices Only Quantization
	2.5 Partial Parameter Quantization

	3 Experimental Results
	3.1 Experimental Settings
	3.2 Non-Streaming Conformer on LibriSpeech
	3.3 Streaming Conformer on Multi-Domain Dataset
	3.4 Measured Memory Usage on Pixel 4 Phones
	3.5 Ablation Study
	3.5.1 Impact of Proposed Methods
	3.5.2 Per-Variable Transformation for From-Scratch Training
	3.5.3 With and Without Partial Parameter Quantization

	4 Related Works
	5 Conclusion
	6 References
	7 Acknowledgements

