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ABSTRACT

Self-supervised learning (SSL) methods which learn representations
of data without explicit supervision have gained popularity in speech-
processing tasks, particularly for single-talker applications. However,
these models often have degraded performance for multi-talker scenarios
— possibly due to the domain mismatch — which severely limits their
use for such applications. In this paper, we investigate the adaptation of
upstream SSL models to the multi-talker automatic speech recognition
(ASR) task under two conditions. First, when segmented utterances are
given, we show that adding a target speaker extraction (TSE) module
based on enrollment embeddings is complementary to mixture-aware
pre-training. Second, for unsegmented mixtures, we propose a novel joint
speaker modeling (JSM) approach, which aggregates information from
all speakers in the mixture through their embeddings. With controlled
experiments on Libri2Mix, we show that using speaker embeddings
provides relative WER improvements of 9.1% and 42.1% over strong
baselines for the segmented and unsegmented cases, respectively. We
also demonstrate the effectiveness of our models for real conversational
mixtures through experiments on the AMI dataset.

Index Terms— self-supervised learning, multi-talker ASR, target-
speaker ASR

1. INTRODUCTION

Self-supervised learning (SSL), which obtains supervisory signals from
the input data itself, is an active sub-area of unsupervised learning [1, 2].
Generally speaking, the SSL pipeline consists of a pre-training stage, in
which an upstream model is trained on a large quantity of unlabeled data
with some pretext tasks, and a fine-tuning stage, in which the upstream
model is adapted for specific downstream tasks with annotated data.

SSL has recently gained popularity in the speech community due to
its strong performance and low adaptation cost. By simply replacing the
acoustic features with hidden representations from pre-trained upstream
models [3, 4], or fine-tuning the entire model with additional task-specific
layers [5, 6], SSL models have surpassed state-of-the-art downstream-only
baselines for several tasks including speech recognition [5, 6] and speaker
recognition [7, 8]. Furthermore, these pre-trained upstream models often
require very small amounts of adaptation data; for instance, wav2vec 2.0
achieves a word error rate (WER) of 8.2% on LibriSpeech [9] test-other
after fine-tuning with 10 minutes of labeled speech [5].

Despite their strong performance for various downstream tasks, most
of the existing SSL models only focus on single-talker scenarios. The
previous studies on pre-training and fine-tuning upstream SSL models
for multi-talker scenarios are very limited [4, 10]. Such scenarios are
usually more challenging due to the involvement of multiple speakers,
quick turn-taking, and overlapping speech [11].

In this paper, we focus on the fine-tuning stage of the SSL pipeline
and investigate the adaptation of SSL-based upstream models to the
multi-talker ASR task, for both segmented utterances and unsegmented
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Fig. 1: Our proposed Target Speaker Extraction (TSE) module (left) and
Joint Speaker Modeling (JSM) module (right) for adapting SSL-based
upstream models to multi-talker ASR.

mixtures. For the former, we build upon previous work on target speaker
extraction and recognition [12, 13, 14, 15]; we use target speaker embed-
dings (extracted from enrollment audio) to direct the model to transcribe
a specific speaker in the segmented utterance containing mixed speech.
We perform a thorough analysis for several modeling aspects, including
embedding type and dimensionality, fusion methods for the adaptation
layer, and the effect of upstream models. For the case of unsegmented
mixtures, we extend the TSE approach by iteratively decoding each
speaker in the mixtures, and we also propose a novel joint speaker
modeling (JSM) technique that aggregates information from all speakers
through their embeddings, and transcribes them simultaneously.

Our contributions are summarized as follows: (1) we propose
methods to adapt SSL models to the multi-talker ASR task based on
the speaker embeddings; (2) we conduct a detailed analysis of different
modeling aspects of target speaker extraction with SSL models; and
(3) we evaluate our methods on both artificial and real datasets, namely
LibriMix and AMI. Our code will be released at the time of publication.

2. THE MULTI-TALKER ASR PROBLEM

In conventional ASR, the input is a single-talker, segmented utterance x
(in time or time-frequency domain), and the system is required to predict
hypothesis y=f(x;Θf), where y is a token sequence and f is a function
parametrized by Θf such as a neural network. In multi-talker ASR, the
input is an unsegmented mixture m containing speech from multiple
speakers (say, K speakers), i.e., m=

∑U
u=1xu, where xu is the u-th

utterance and is shifted and zero-padded to the length of m. Here, we
assume that the additive noise and convolutive reverberations are included
in the individual terms. Additionally, we may be provided enrollment
embeddings ek ∈Rd for the K speakers in the mixture. The desired
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output isy=
⋃U

u=1yu, whereyu is the transcription corresponding toxu.
Depending on whether the mixture is segmented, two cases are possible.

2.1. Segmented utterances
In this easier case, we assume that the spans and speaker identities for
all U utterances are known, such that yu can be directly estimated:
ŷu=gS(m,∆u,eku ;ΘgS), where ∆u denotes the span of xu in the mix-
ture, ku is the speaker index corresponding to utterance xu. By repeating
this inference U times, we get the desired multi-talker hypothesis ŷ. In
practice, ∆u and ku may be obtained using speaker diarization.

2.2. Unsegmented mixture
In this case, the individual segmentation of xu is not known in advance,
therefore utterance-level transcription is not feasible. If we assume that
speakers are enrolled, we can instead perform speaker-level transcription,
i.e., ŷ′ =

⋃K
k=1 ŷ

k, where ŷk denotes the hypothesis for speaker k.
This may be done by iteratively decoding each speaker using a same
single-talker parametrized model, i.e.,

ŷk =gS(m,∆,ek;ΘgS), (1)

where ∆ is a dummy span indicating the entire duration of m. Alterna-
tively, we can define a multi-talker parametrized model gM and perform
joint decoding of all speakers, i.e.,

ŷ′=gM(m,E1:K;ΘgM), (2)

where E∈Rd×K contains allK speaker embeddings.
In the next section, we will describe our proposed methods to use

self-supervised models for both gS and gM, so that we can handle
segmented and unsegmented inputs.

3. ADAPTING SELF-SUPERVISED
MODELS WITH SPEAKER EMBEDDINGS

First, we will show how to adapt self-supervised models for the case
of single-talker transcription (i.e., gS) using speaker embeddings. This
model can be used for segmented utterances or iterative decoding of un-
segmented mixtures. Thereafter, we will develop a multi-talker extension
(i.e., gM) of the model to perform joint decoding of all speakers in the
mixture. Since our methods rely on the architecture of the upstream SSL
models, we will briefly describe them here.

We used three variants of the wav2vec 2.0 [5] class of SSL models:
HuBERT [6], WavLM Base, and WavLM Base+ [4]. These models con-
sist of convolutional and Transformer encoders. For all models, the convo-
lutional encoder contains 7 layers that down-sample the audio input by a
factor of 320, such that the extracted features (say hconv) have a stride of
20ms and a receptive field of 25ms. The CNN encoder is followed by a 12-
block Transformer encoder, which produces contextual output represen-
tations htrf . Each Transformer block consists of a 768-dim self-attention
layer with 8 heads and a 3,072-dim feed-forward layer. WavLM addition-
ally uses relative gated positional bias in the self-attention layers [16].

3.1. Target speaker extraction (TSE)
We adapt SSL models for single-talker transcription through a “target
speaker extraction” (TSE) component that models gS, as illustrated in
Fig. 1 (left). Specifically, we insert a speaker adaptation layer between
the CNN and Transformer blocks of the encoder. This layer adapts hconv

using the speaker embedding ek before feeding them to the Transformer
encoder. By fine-tuning the model with multi-talker mixtures, speaker
embeddings, and corresponding references, the adaptation layer learns
to extract only target-speaker features from the CNN representations.
The adapted CNN representations, ĥconv, are passed to the Transformer
encoder which produces speaker-specific contextual representations, ĥtrf .

A linear projection layer maps ĥtrf to the output dimensionality, and the
CTC loss [17] is used for end-to-end training.

In our experiments, we tried four different methods for the imple-
mentation of the speaker adaptation layer.
1. ADD: ek is added to hconv through a linear projection.

2. CAT: ek is appended to hconv and the concatenated representation is
projected back to the original dimension through a linear projection.

3. FiLM: Feature-wise linear modulation [18] estimates a feature-wise
affine transformation based on the conditioning information, i.e.,
ĥconv = γ(ek) · hconv + β(ek), where γ and β can be arbitrary
functions. In our experiment, γ and β are two linear layers.

4. CLN: In standard Transformer layers, layer normalization [19] has
been applied to normalize the distributions of intermediate layers,
formulated as

ĥ=
h−µ
σ
·γ+β (3)

where µ and σ are the mean and standard deviation of input features
h, γ and β are learnable scaling and shifting parameters for the affine
transformation. Conditional layer normalization (CLN) [20] replaces
γ with a speaker-specific scaling γ̂(ek), i.e.,

γ̂(ek)=w(ek)·γ+b(ek) (4)

Basically, it transforms γ with a FiLM layer conditioned on the
speaker embeddings ek. Different from the three above meth-
ods which take hconv as input, CLN is introduced to the bottom
Transformer block by replacing the original two LNs.

3.2. Joint speaker modeling (JSM)
In principle, the TSE module can be used for the transcription of unseg-
mented mixtures by iterating over all speakers. However, this setup may
be sub-optimal for multi-talker ASR since the hypothesis produced for a
speaker is independent of other speakers. Some errors, like repetitive de-
coding of the same utterance, could be potentially eliminated if the model
has an overview of all speakers presented in the speech. Furthermore,
the TSE approach would require K decoding iterations, resulting in
higher inference time. Inspired by the architecture of target-speaker voice
activity detection (TS-VAD) [14], we propose “joint speaker modeling”
(JSM) as illustrated in Fig. 1 (right). We first use the TSE module to
extract speaker-specific contextual representations hk

trf for all speakers
in the speech mixture m. Thereafter, the JSM module models gM by
computing ŷ′ directly using {hk

trf |k= 1,2,...,K}. In our implementa-
tion, the representations hk

trf are concatenated along the feature axis and
projected back to the original dimension. The combined input then pass
through a Transformer layer to get multi-talker contextual representations
ĥtrf . Finally, a linear layer maps ĥtrf to K×|V | output units (where
|V | is vocabulary size) to get token-level posteriors for each speaker. The
model is trained with the sum of CTC losses over allK speakers.

4. EXPERIMENTAL SETUP

4.1. Data
We evaluated our method on LibriMix [21] and AMI [22] dataset.
LibriMix is a synthetic dataset consisting of simulated speech mixtures.
In our experiments, we used the “2-spk 16kHz max” condition (hereby
denoted as Libri2Mix). The training set consisted of 58 hours of speech
mixtures created from LibriSpeech [9] train-clean-100 while the dev
and test set contained 11 hours each.

AMI [22] is a meeting-style corpus consisting of∼100h of annotated
audio/video recordings. Each meeting has 3 to 5 participants, and was
recorded using headset microphones and two 8-ch microphone arrays. In
our experiments, we use the so-called “IHM-mix" evaluation condition,
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Fig. 2: Utterance-based and utterance group-based evaluation schemes
for segmented utterances and unsegmented mixtures, respectively.

which is generated by mixing all headset recordings from the same
meeting. The resulting audios contain a significant amount of overlap
but no far-field artifacts, allowing us to evaluate our models specifically
for overlapping speech.

Our proposed methods require enrollment utterances for speaker em-
bedding extraction. For Libri2Mix, we collected 15 seconds of enrollment
speech per speaker from the Libri-Light [23] project (excluding the Lib-
riSpeech portion). For AMI IHM-mix, since the same speakers participate
in multiple meetings, we used clean segments from other meetings as en-
rollment utterances. For example, if the speaker FEE041 participated in
four meetings ES2011a-d, the clean segments in meetings ES2011b-d
would be considered for enrollment of FEE041 in meeting ES2011a.

4.2. Evaluation metrics
The two tasks with segmented utterances (§ 2.1) and unsegmented
mixtures (§ 2.2) require different evaluation schemes. Following [24], we
refer to these as utterance-based and utterance group-based evaluation,
respectively, which are illustrated in Fig. 2.

In utterance-based evaluation, the exact time boundary for each
speaker segment is known. We perform inference on each speaker seg-
ment, and our hypothesis is compared with the reference to compute the
word error rate (WER). To evaluate unsegmented mixtures, we defined
an “utterance group” as a set of utterances connected by speaker overlaps.
In practice, a voice activity detector (VAD) may be used to estimate ut-
terance group boundaries. If the correspondence between the multi-talker
hypotheses and references in an utterance group is unknown (as is the case
in [24]), concatenated minimum-permutation WER (cpWER) [25] may
be computed instead of WER. In our proposed model, the output order of
hypotheses is determined by the order of speaker embeddings, therefore
we can directly compute the WER between the hypotheses and references.

4.3. Model configuration and baselines
The upstream models we used are all pre-trained with the same masked
cluster index prediction loss [6]. However, while HuBERT is trained only
on single-talker audios, WavLM additionally uses simulated mixtures for
pre-training, which makes it more suitable for multi-talker downstream
tasks. HuBERT and WavLM Base are pre-trained using LibriSpeech
(960h), while WavLM Base+ uses 94k hours of mixtures comprising
large-scale diverse data, such as LibriLight [26], VoxPopuli [27], and
GigaSpeech [28].

Besides the upstream model, the choice of pre-trained speaker
embedding extractor and the dimensionality of ek is also important
towards the final performance. We compared the multi-talker ASR
performance for three different embedding methods — i-vectors [29],

Table 1: WER (%) on Libri2Mix and AMI IHM-mix for utterance-based
evaluations. TSE used x-vectors fused by the CLN approach.

Model Libri2Mix AMI

WavLM Base+ 8.34 18.97
+ TSE 7.58 18.07
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Fig. 3: WER decomposition by overlap ratio for AMI IHM-mix.

x-vectors [30], and ECAPA-TDNN embeddings [31]. I-vectors are unsu-
pervised embeddings that model the total variability between an utterance
and the universal background model. X-vectors [30] and ECAPA-TDNN
embeddings, on the other hand, are extracted from discriminatively-
trained neural networks after pooling layers. While the former uses
conventional time-delay neural networks (TDNNs) [32], the latter applies
several enhancements on the frame and segment pooling components
through squeeze-and-excitation [33] and channel-dependent attention,
respectively. For speaker recognition, DNN-based embeddings have been
found to outperform i-vectors; ECAPA-TDNN, in particular, has obtained
state-of-the-art performance on the VoxCeleb benchmark [31]. For our
experiments, all these three embedding extractors were pre-trained on
the VoxCeleb [34, 35] dataset, with a dimension of 400, 512, and 256
for i-vectors, x-vectors, and ECAPA-TDNN embeddings, respectively.

For segmented utterances, we compared our models with a baseline
that does not use any speaker embeddings but is otherwise fine-tuned on
the same data. For unsegmented mixtures, we implemented a permutation
invariant training (PIT) [36] baseline as follows. We added a linear layer
consisting ofK×|V | output units on top of the pre-trained SSL model,
where each of theK sets is expected to transcribe a distinct speaker. The
model was then trained using PIT, i.e., using the minimum sum of losses
between all permutations of reference and hypotheses speakers. Since
this model does not have a deterministic speaker ordering, we evaluated
it using cpWER instead of regular WER.

5. RESULTS & DISCUSSION
5.1. Utterance-based evaluation of segmented utterances
We evaluated the impact of our proposed TSE module on Libri2Mix
and AMI IHM-Mix using WavLM Base+, with x-vector embeddings
fused by the CLN approach. These results are shown in Table 1. For
utterance-based evaluation, the baseline WavLM system worked well
even without any enrollment information. Despite the high overlap
ratio of Libri2Mix, it achieved 8.34% WER on the test set. Similarly,
it obtained a competitive WER of 18.97% on AMI. Adding the TSE
module improved the WERs by 9.1% and 4.7% relative on Libri2Mix
and AMI, respectively. To better understand where the improvements
came from, we analyzed the AMI WER across different overlap ratios, as
shown in Fig. 3. Compared with the WavLM baseline, our TSE-enhanced
model achieved comparable or slightly worse WER when the overlap
ratio was low (below 50%). However, it outperformed WavLM by a
clear margin for higher overlap ratios. We conjecture that for lower



Table 2: WER (%) on Libri2Mix for
different SSL-based upstream models with
and without the TSE module.

Model w/o TSE w/ TSE

HuBERT Base 13.04 11.62 (↓10.9%)
WavLM Base 9.81 9.03 (↓8.0%)
WavLM Base+ 8.34 7.58 (↓9.1%)

Table 3: WER (%) on Libri2Mix for different types
and dimensionality of speaker embeddings.

Embed. type CLN ADD

d=64 d=128 d=64 d=128

i-vector 7.82 8.04 8.25 8.54
ECAPA-TDNN 7.87 8.14 8.00 8.65
x-vector 7.58 7.65 7.86 7.91

Table 4: WER (%) on Libri2Mix for
different fusion methods in the speaker
adaptation layer.

Method utterance utterance group

dev test dev test

ADD 7.52 7.63 12.13 14.28
CAT 7.45 7.65 11.96 13.33
FiLM 7.31 7.66 12.45 13.84
CLN 7.09 7.58 11.04 12.32

overlap ratios, WavLM is able to perform well because it transcribes the
majority speaker in the utterance. For higher overlap ratios, it cannot
predict the target speaker based on the majority duration, and TSE
provides this additional information for such cases.

We further conducted several experiments on Libri2Mix to analyze
the impact of different factors such as the upstream model, the embedding
type and its dimensionality, and the fusion technique used in the speaker
adaptation layer. These are described in the following sections.

5.1.1. Effect of upstream models
During pre-training, the upstream model learns generalizable task-
agnostic representations using SSL, the quality of which usually deter-
mines the performance of downstream tasks. In Table 2, we compared the
multi-talker ASR performance for the three upstream models described
earlier, using CLN-based fusion with x-vector speaker embeddings.

First, we observe that the WavLM models significantly outper-
form HuBERT, both with and without the TSE module, due to their
enhanced speaker modeling ability and robustness to noise and speaker
overlaps. Pre-training on a large-scale diverse dataset (WavLM Base+)
provided the best WERs, as expected. Nevertheless, adding TSE pro-
vides consistent improvements of 8-11% across all models, indicating
that explicit speaker enrollment is complementary to mixture-based
pre-training scheme. For the following experiments, we used WavLM
Base+ as the upstream model.

5.1.2. Effect of speaker embeddings
In this section, we investigate the impact of speaker embedding type
and dimensionality. For a fair comparison, we projected the speaker
embeddings to the same dimension using principal component analysis
(PCA) [37]. From Table 3, we first observe that 64-dim embeddings
outperform their 128-dim counterparts, indicating that there may be
extraneous information encoded in higher dimensions. Next, even
though ECAPA-TDNNs achieve SOTA performance on speaker recog-
nition, they are outperformed by x-vectors when used in the TSE module
(for both CLN and ADD fusion).

5.1.3. Effect of fusion methods
In § 3.1, we described four different fusion methods for the speaker
adaptation layer. Recall that ADD and CAT directly fuse the speaker em-
bedding ek to the convolutional representation hconv, whereas FiLM and
CLN estimate affine transforms based on ek. Here, we compare their per-
formance in both utterance-based and utterance group-based evaluation
settings, as shown in Table 4. On utterance-based evaluation, all these four
methods have similar performance, with CLN slightly outperforming oth-
ers. However, when the segmentation is unknown (utterance group-based
evaluation), CLN outperforms other methods by a large margin.

5.2. Utterance group-based evaluation of unsegmented mixtures
From the above ablation experiments, we demonstrated that the combi-
nation of WavLM Base+ upstream model, x-vector speaker embedding,
and the CLN fusion method provided the best WER performance. Next,
we used this configuration to conduct utterance group-based evaluations
for unsegmented mixtures, and the results are shown in Table 5.

Table 5: WER (%) on Libri2Mix and AMI IHM-mix for utterance
group-based evaluations of unsegmented mixtures.†PIT does not have
a fixed speaker order, therefore the results are shown using cpWER.

Model Libri2Mix AMI

WavLM Base+ 104.44 100.26
+ PIT† 18.45 27.02
+ iterative TSE 12.32 49.47
+ TSE + JSM 10.68 28.40

It is immediately clear that the single-talker WavLM baseline, which
performed well on segmented utterances, failed miserably when the
segmentation was not known, resulting in WERs above 100%. This
is because, without any additional information, the model does not
know which speaker to transcribe in the unsegmented mixtures. Joint
multi-talker inference using permutation invariant training (PIT) helped
the model overcome this limitation and the resulting system obtained
decent results on the task, achieving a cpWER of 18.45% on Libri2Mix
and 27.02% on AMI. Recall that since PIT does not have a determin-
istic speaker order, we use cpWER instead of WER to evaluate its
performance.

Next, we evaluated an iterative decoding approach (described in
§ 2.2) based on the TSE module. While this model conveniently outper-
formed PIT on Libri2Mix with a WER of 12.32%, its performance on
AMI IHM-Mix was sub-par. Our error analysis revealed that this was
because on AMI IHM-Mix, the model sometimes mistakenly transcribed
other speakers when the target speaker didn’t talk or only talked for a
short period in the utterance group. We had conjectured that this prob-
lem of repeated decoding can be alleviated using the JSM module
described in § 3.2. As expected, the multi-talker ASR performance
was significantly improved after we jointly modeled the activities of
all speakers using the JSM module. WERs improved from 12.32% to
10.68% on Libri2Mix, and from 49.47% to 28.40% on AMI IHM-mix.
Although this WER may seem slightly worse than PIT, it is simply
because the evaluation of PIT through cpWER is more forgiving. If we
discard the speaker ordering in JSM and compute the best permutation
word error rate, JSM will outperform PIT with a cpWER of 25.88%.

6. CONCLUSION
In this paper, we investigated the adaptation of self-supervised models to
the multi-talker ASR task using speaker embeddings, for both segmented
and unsegmented inputs. For the former, we explored a target speaker
extraction module that was found to be complementary to mixture-aware
pre-training. For the latter, we proposed a novel joint speaker modeling
approach to jointly decode all speakers in the mixture. Furthermore, we
performed controlled experiments to study the impact of several modeling
aspects in target speaker extraction with SSL models. Our experimental
results on LibriMix and AMI demonstrated that self-supervised mod-
els can achieve substantially better multi-talker ASR performance by
utilizing information from speaker embeddings. We will explore the
possibility of applying our methods to other multi-talker tasks such as
speaker diarization and speech separation in the future.
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