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ABSTRACT

Spectral Graph Convolutional Networks (spectral GCNNs),
a powerful tool for analyzing and processing graph data,
typically apply frequency filtering via Fourier transform to
obtain representations with selective information. Although
research shows that spectral GCNNs can be enhanced by
framelet-based filtering, the massive majority of such re-
search only considers undirected graphs. In this paper, we
introduce Framelet-MagNet, a magnetic framelet-based spec-
tral GCNN for directed graphs (digraphs). The model applies
the framelet transform to digraph signals to form a more
sophisticated representation for filtering. Digraph framelets
are constructed with the complex-valued magnetic Laplacian,
simultaneously leading to signal processing in both real and
complex domains. We empirically validate the predictive
power of Framelet-MagNet over a range of state-of-the-art
models in node classification, link prediction, and denoising.

Index Terms— Directed Graph, Graph Convolutional
Neural Network, Magnetic Laplacian, Graph Framelets,
Graph Framelet Transform

1. INTRODUCTION

Recent years have witnessed the surging popularity of re-
search on graph convolutional neural networks (GCNNs)
[1]. Through the integration of graph signals and topolog-
ical structures in graph convolution, GCNNs usually pro-
duce more valuable insights than models that analyze data
in isolation. Especially, spectral GCNNs define their graph
convolution in the frequency domain, enabling the filtering of
different frequency components in graph signals. However,
the majority of studies on signal processing in spectral GC-
NNs only focus on undirected graphs [2, 3, 4]. In this paper,
we aim to extend framelet-based signal processing to spectral
GCNNs for directed graphs (digraphs).

Many directional relationships are naturally modelled
as digraphs, such as citation relationships [5], website hy-
perlinks [6], and road directions [7]. Using graph edges
to represent directional information backbones the explo-
ration of more aspects of the underlying data, which usually

provides more useful findings. Nonetheless, while spec-
tral GCNNs assume the eigendecomposition of symmetric
graph Laplacian to provide real-valued eigenvalues and or-
thonormal eigenvectors, the digraph Laplacian is asymmetric.
Converting digraphs to undirected graphs facilitates the ex-
tension of spectral methods to digraphs, but destroys the
digraph structure. Therefore, many recent studies engage
in designing symmetric digraph Laplacian that can preserve
the directional information [8, 9, 10, 11]. Magnetic Lapla-
cian [11, 12] is one of the most successful instances. It is
a complex-valued Hermitian matrix, whose real part shows
edge existence, and imaginary part indicates edge directions.
Magnetic Laplacian-based digraph networks exploit magnetic
Laplacian in classic spectral GCNN architectures and have
demonstrated their power in various graph tasks [11].

Classic spectral GCNNs adopt Fourier transform in their
convolutional layer. Converting graphs signals to the Fourier
frequency domain allows the processing of signal frequen-
cies, but only from a global perspective. More specifically,
although we can detect signal frequencies, we cannot iden-
tify their position in the graph. To investigate both global
and local information, we can ensemble spectral GCNNs with
framelet transform instead. The framelet frequency domain is
composed of graph framelets, which are constructed through
dilation and translation of a set of localized scaling functions.
Nevertheless, most existing wavelet/framelet-based networks
are solely applicable to undirected graphs [2, 3, 4]. Although
SVD-GCN [13] accomplishes digraph framelet transform via
singular value decomposition (SVD) of the asymmetric di-
graph Laplacian, its theoretical rationale is very vague, for
example, how the Laplacian frequency can be linked to the
signal frequency in the SVD domain.

In this paper, we propose Framelet-MagNet, a magnetic
Laplacian-assisted framelet-based spectral GCNN for di-
graphs. Multiresolution Analysis enables us to construct
digraph framelets with the magnetic Laplacian and a filter
bank [14, 15]. In addition, we also construct quasi-framelet
directly in the frequency domain to impose double regulation
on digraph signals [4]. We exploit Chebyshev polynomial
approximation for fast framelet transform and reconstruction.
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The contributions of our work are threefold. (1) To
our best knowledge, this is the first attempt to construct a
framelet-based digraph GCNN without discarding the role
of Laplacian eigendecomposition. (2) We realize framelet-
based convolution on digraph data in both real and complex
domains, which enriches the basis for signal processing. (3)
Vast experiment results validate the superiority of our model
over the state-of-the-art approaches in various digraph tasks.

2. THE METHOD

2.1. Magnetic Laplacian

Magnetic Laplacian, a complex-valued Hermitian matrix,
is a digraph representation whose real part indicates edge
existence and imaginary part shows edge directions. Let
Gd{V, E ,A} be a digraph, where V is a set of N vertices,
E is a set of edges, and A is the adjacency matrix. The
first step to construct the magnetic Laplacian is to decom-
pose the adjacency matrix into a symmetric part Asym and a
skew-symmetric part Askew as following:

Asym(i, j) =
1

2
(A(i, j) + A(j, i)), 1 ≤ i, j ≤ N,

Askew(i, j) = A(i, j)−A(j, i), 1 ≤ i, j ≤ N.

The degree matrix corresponding to the symmetric part is de-
noted as Dsym. Then, the magnetic Laplacian (normalized)
can be defined as

L(q) = I−Ψ(q) �
(
D
− 1

2
symAsymD

− 1
2

sym

)
, (1)

where

Ψ(q)(i, j) = exp (2πiqAskew(i, j)), 1 ≤ i, j ≤ N.

Here q in Ψ(q) is a non-negative electric charge parameter
[11, 12]. q is designed as a hyperparameter whose range is
between 0 and 0.25, where higher q allows the Laplacian to
encode more directional information. When we set q = 0,
no directional information will be stored. Since the complex
component Ψ(q) � Asym is Hermitian, and the degree ma-
trix is diagonal, the magnetic Laplacian is Hermitian as well.
According to [11], the magnetic Laplacian is positive semi-
definite, hence it supports the eigendecomposition required
by spectral GCNNs.

2.2. Magnetic Graph Framelet Transform

The most important component in framelet-based spectral
GCNNs is the framelet convolution. We firstly transform
graph signals to the framelet frequency domain for filtering,
then convert the processed data back to the spatial domain
with the framelet reconstruction function. Intuitively, we
desire no information loss during the whole process, which

Fig. 1. Framelet-MagNet for a node classification task. In the
framelet convolutional layer, graph signal is decomposed into
low-pass and high-pass components stored in a long vector,
then processed by filter gω before we convert it back to the
spatial domain and apply activation. Then, we unwind the
new representation and apply a fully connected linear layer
for classification.

means we expect the framelet transform to be “tight”. Ac-
cordingly, we design the Magnetic Graph Framelet Trans-
form (MGFT), which is a tight framelet transform defined on
digraphs. The fundamental principle of MGFT is to incorpo-
rate magnetic Laplacian in the traditional undecimated tight
framelet transform on undirected graphs. For a review of the
traditional approaches and their theoretical background, we
refer readers to [14, 15, 16].

As the magnetic Laplacian is positive semi-definite, we
can write it as L(q) = UΛU∗, where ∗ denotes conjugate
transpose. We let {(uk, λk)}N−1k=0 be the eigenvector and
eigenvalue pairs of L(q). With the transition position n ∈ V
and the dilation level s = 1, ..., S, we define the low-pass and
high-pass magnetic graph framelets ρ(q)n,s and %(q)n,s,r as

ρ(q)n,s(m) =

N−1∑
k=0

uk(m)ζ̂0

(
λk
2s

)
u∗k(n),

%(q)n,s,r(m) =

N−1∑
k=0

uk(m)ζ̂r

(
λk
2s

)
u∗k(n), 1 ≤ r ≤ R,

(2)

where Z = {ζ0, ..., ζR} is a set of real-valued scaling func-
tions. The low-pass and high-pass framelets will decompose
graph signals into low and high frequency components dur-
ing transform. According to [14], we can find the appropri-
ate set of scaling functions via Multiresolution Analysis. Ba-
sically, we derive scaling functions from a filter bank a =
{a0, ..., aR} defined in the spatial domain with the following
relationship

ζ̂r(2δ) = âr(δ)ζ̂0(δ), (3)



for r = 1, ..., R and any δ ∈ IR. Then, “quasi-framelet” pro-
posed by Yang et al. [4] relaxes the requirement of Multireso-
lution Analysis by straightforwardly constructing a quasi fil-
ter bank b = {b0, ..., bR} in the Fourier domain. By defini-
tion, b should satisfy the identity condition

R∑
r=0

br(δ)
2 ≡ 1, ∀δ ∈ [0, π], (4)

such that the value of b0 decreases from 1 to 0 while the value
of bR increases from 0 to 1 over the Fourier domain [0, π].
This will allow framelet convolution to impose “double regu-
lation” on the graph signals. More specifically, graph signals
are regulated by not only the learnable filter in traditional con-
volutions, but also the modulation functions b0, ..., bR, where
b0 and bR attenuate high and low frequency components, and
the rest regulates frequency in between. In the following dis-
cussions, we denote â = {â0, ..., âR} and b = {b0, ..., bR}
collectively as z = {z0, ..., zR} for simplicity. With a single
signal x ∈ IRN , we can define MGFT as{
〈x, ρ(q)n,S〉

}
n∈V

= F (q)
0,Sx,{

〈x, %(q)n,s,r〉
}
n∈V

= F (q)
r,s x, 1 ≤ r ≤ R, 1 ≤ s ≤ S,

(5)

where for s = 1, F (q)
r,1 = Uzr

(
Λ
2M

)
U∗ and for s = 2, ..., S,

F (q)
r,s = Uzr

(
Λ

2M+s−1

)
z0

(
Λ

2M+s−2

)
· · · z0

(
Λ

2M

)
U∗.

In these equations, M is the smallest number such that
λmax ≤ 2Mπ, and zr

(
Λ
2M

)
= diag

(
zr
(
λk

2M

))
for r =

0, ..., R and k = 0, ..., N − 1. We can use a vertically stacked
transform matrix F (q) =

[
F (q)

0,S ;F
(q)
1,1 ; ...;F

(q)
1,S ; ...;F

(q)
R,S

]
to

express magnetic framelete transform more concisely as

F (q) = F (q)x, (6)

where F (q) can be considered as framelet coefficients. Then,
magnetic framelet reconstruction is given by

x̃ = F (q)∗F (q). (7)

Recall that we expect MGFT to be tight, that is, x = x̃. We
can achieve this by selecting appropriate filter banks. Existing
examples include Haar [14], Linear [14], Quadratic
[14], Sigmoid [4], and Entropy [4]. We will exploit them
in our experiment.

Employing the fast computation proposed in [16], we
approximate the filter bank z with with Chebyshev poly-
nomials T̃r(·), r = 0, ..., R. We propose Fast Magnetic
Framelet Transform (FMFT) that defines the transform op-
erator as F̃ (q) =

[
F̃ (q)

0,S ; F̃
(q)
1,1 ; ...; F̃

(q)
1,S ; ...; F̃

(q)
R,S

]
, where for

s = 1, F̃ (q)
r,1 = Tr(2−ML(q)), and for s = 2, ..., S, F (q)

r,s =

Tr(2−M−s+1L(q))T0(2−M−s+2L(q)) · · · T0(2−ML(q)). Ac-
cordingly, the framelet transform and reconstruction are ap-
proximated by F (q) ≈ F̃ (q)x and x ≈ F̃ (q)∗F (q).

2.3. Framelet-Magnet

With the FMFT, we define the ith magnetic framelet convo-
lutional layer as

σ(gωi
∗Xi−1) = σ

(
F̃ (q)∗

(
diag(ωi)

(
F̃ (q)(Xi−1Wi)

)))
,

where σ is a non-linear activation function, gωi
= diag(ωi) is

a learnable filter, Xi−1 is anN×Di−1 feature matrix with X0

being the original graph feature matrix, and Wi is a Di−1 ×
Di matrix, where Di−1 and Di are dimensions of the input
and output channels.

Framelet-Magnet is composed of one or multiple mag-
netic framelet convolutional layers, an unwind operator, and
a fully connected linear layer before the output layer. Sup-
pose we have C convolutional layers, then we will obtain an
N ×DC complex-valued graph representation. The purpose
of the unwind operator is to unwind this representation to an
N × 2DC real-valued representation for further processing.
In node classification tasks, we use this real representation di-
rectly for prediction as in Fig. 1. In link prediction tasks, on
the other hand, we will concatenate the rows corresponding
to the node pair connected by each edge before feeding it to
the following layers.

3. EXPERIMENTS

We compare our model, Framelet-MagNet, with 10 state-of-
the-art models in node classification, link prediction, and de-
noising. Link prediction consists of two different tasks, link
existence prediction and link direction prediction.

3.1. Datasets and Implementation Details

Node classification experiment is a semi-supervised task
based on two citation datasets, CORA ML and CITESEER
[24], and a WebKB dataset, CORNELL [25]. For citation
datasets, following the experiments in [18], we use 20 labels
from each class for training, 500 labels for validation, and
the rest for testing. For CORNELL, we use a 60%/20%/20%
train/validation/test split. Link prediction tasks are conducted
on CORA ML, CORNELL, and a WikipediaNetwork dataset,
CHAMELEON [26]. We remove 5% edges for validation,
15% edges for testing, and we keep the rest of the edges
for training, such that the number of nodes remains constant
after the split. The experiments are conducted on 10 random
subsets from each dataset, and we will evaluate the models
with the average results. We use node attributes as the input
features for node classification. For link prediction, we iden-
tify edges through ordered node pairs and use in-degrees and
out-degrees as input features to learn directly from the graph
structure. Let Gd{V, E ,A} be a digraph. For an ordered node
pair vi, vj ∈ V , we define its label as following (1) existence
prediction: 0 if (vi, vj) ∈ E and 1 otherwise; (2) direction
prediction: 0 if (vi, vj) ∈ E and 1 if (vj , vi) ∈ E . Note that



Table 1. Experiment Results: Node Classification and Link Prediction Accuracy (%)
Node Classification Link Existence Link Direction

Models CORA ML CITESEER CORNELL CORA ML CORNELL CHAMELEON CORA ML CORNELL CHAMELEON
ChebNet [17] 60.8 ± 3.3 53.3 ± 2.6 74.1 ± 2.8 50.1 ± 0.1 49.7 ± 1.4 50.1 ± 0.0 50.1 ± 0.2 49.6 ± 10.3 50.0 ± 0.0

GCN [18] 69.7 ± 2.0 60.1 ± 2.6 42.4 ± 5.7 73.1 ± 5.3 51.1 ± 3.7 89.8 ± 0.5 79.1 ± 1.5 52.0 ± 2.8 96.8 ± 0.6
APPNP [19] 79.4 ± 2.7 66.7 ± 2.0 42.7 ± 5.5 69.5 ± 3.9 61.4 ± 8.0 87.1 ± 4.9 81.9 ± 0.9 70.3 ± 10.9 97.4 ± 0.2

GraphSAGE [20] 78.7 ± 1.1 66.4 ± 1.3 69.2 ± 3.5 67.2 ± 3.7 63.5 ± 9.4 86.0 ± 0.5 69.1 ± 0.5 69.0 ± 7.4 94.2 ± 0.3
GIN [21] 78.7 ± 1.8 63.9 ± 2.2 48.1 ± 5.0 75.0 ± 3.4 65.5 ± 8.5 83.9 ± 7.1 84.2 ± 0.9 77.0 ± 7.1 97.6 ± 0.2
GAT [22] 81.2 ± 2.0 66.2 ± 1.7 45.4 ± 10.4 50.0 ± 0.2 51.4 ± 3.5 50.4 ± 1.0 50.0 ± 0.6 50.7 ± 3.1 51.6 ± 2.2

DGCN [23] 79.8 ± 1.5 65.9 ± 1.4 65.1 ± 6.1 60.6 ± 7.6 60.8 ± 10.1 86.3 ± 1.4 70.9 ± 1.4 58.7 ± 5.1 93.7 ± 6.4
Digraph [10] 76.7 ± 1.9 62.9 ± 1.8 54.6 ± 6.8 76.7 ± 1.9 54.6 ± 6.8 83.9 ± 11.4 73.2 ± 11.7 49.1 ± 2.7 92.2 ± 14.1
DiGCN [10] 76.5 ± 1.6 61.6 ± 1.9 54.3 ± 7.5 72.8 ± 7.7 65.6 ± 12.1 88.9 ± 0.6 83.4 ± 1.5 73.3 ± 15.3 97.4 ± 0.2
MagNet [11] 78.7 ± 2.2 64.6 ± 2.2 74.6 ± 4.4 77.1 ± 1.4 68.2 ± 7.0 89.8 ± 0.5 87.0 ± 0.6 78.6 ± 10.6 97.7 ± 0.2

Framelet-MagNet 83.8 ±1.4 67.8 ±1.5 77.0 ± 3.5 78.1 ± 1.2 73.8 ± 6.0 89.7 ± 0.4 88.5 ± 1.0 86.7 ± 5.7 97.8 ± 0.2
q 0.00 0.05 0.25 0.15 0.25 0.25 0.15 0.25 0.25

Framelet type Sigmoid Sigmoid Quadratic Haar Haar Linear Haar Linear Sigmoid

Fig. 2. Denoising results on CORA ML. Framelet-MagNet
(red) achieves higher classification accuracy at every noise
level over other models.

we choose only linked node pairs for the link direction task.
Moreover, we use either asymmetric or symmetrized adja-
cency matrix to train spatial models. ChebNet is trained with
only symmetrized Laplacian. For the rest of the models, we
adopt the asymmetric adjacency matrix and construct their
special Laplacians accordingly. Hyperparameters including
the number of filters, the learning rate, and magnetic parame-
ter q are tuned following grid search as common practice.

3.2. Experiment Results

The experiment results of node classification and link pre-
diction tasks are shown in Table 1. In node classification,
Framelet-MagNet presents a good performance across all
three datasets with the highest classification accuracy. It im-
proves the state-of-the-art accuracy by 2.6% on CORA ML
and 2.4% on CORNELL. Framelet-MagNet selects small q
for citation datasets. We suggest that this is because classifi-
cation of articles does not depend on directional relationship.
No matter one paper cites or is cited by another paper, they
are likely to be in the same category. In link existence pre-
diction, our model achieves the best accuracy on CORA ML
and CORNELL, enhancing the state-of-the-art performance
by 1% and 5.6%, respectively. In terms of CHAMELEON,
GCN and MagNet have the highest accuracy of 89.8% while
our model achieves the second best with an accuracy of

89.7%. In link direction prediction, our model again beats
other approaches over all datasets. Especially, on CORNELL,
Framelet-MagNet produces an accuracy that is 8.1% higher
than the second best model. Compared with the node classifi-
cation experiment, the optimal q value is larger, implying that
directional information is very useful in link-level tasks.

3.3. Test of Denoising Capability

In real-life applications, it is inevitable that some informa-
tion such as adversarial examples is harmful to model predic-
tion [27]. Such information is considered as “noises”. In-
tuitively, removing noises from graph signals will enhance
predictive performance. This procedure is known as “denois-
ing”. We test the denoising capability of Framelet-MagNet
on the disturbed CORA ML dataset with node classification
experiment settings. To perturb CORA ML whose features
are normalized numbers, we manually impose Gaussian dis-
tributed noises and regulate noise level by altering the distri-
bution standard deviation. Fig. 2 presents the results, based
on which we conclude that Framelet-MagNet shows clear su-
periority over MagNet and GCN in the denoising task.

4. CONCLUSION

We propose Framelet-MagNet, a magnetic framelet-based
spectral GCNN for digraphs, and demonstrate its power
over state-of-the-art methods via empirical results. We re-
alize framelet convolution and process digraph signals in
a complex frequency domain to achieve effective filtering.
However, due to the limitation of magnetic Laplacian, our
method is not applicable to weighted mixed graphs. Besides,
our link-level experiment has no clear definition of undirected
edges, so we treat undirected information as noises. Future
works may investigate the solutions to current limitations.
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