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ABSTRACT

Named Entity Recognition (NER) is a well and widely
studied task in natural language processing. Recently, the
nested NER has attracted more attention since its practi-
cality and difficulty. Existing works for nested NER ig-
nore the recognition order and boundary position relation
of nested entities. To address these issues, we propose a
novel seq2seq model named GPRL, which formulates the
nested NER task as an entity triplet sequence generation pro-
cess. GPRL adopts the reinforcement learning method to
generate entity triplets decoupling the entity order in gold
labels and expects to learn a reasonable recognition order
of entities via trial and error. Based on statistics of bound-
ary distance for nested entities, GPRL designs a Gaussian
prior to represent the boundary distance distribution between
nested entities and adjust the output probability distribution
of nested boundary tokens. Experiments on three nested
NER datasets demonstrate that GPRL outperforms previ-
ous nested NER models. Source code will be available at
https://github.com/THU-BPM/GPRLNER.

Index Terms— Nested NER, Entity Triplet Sequence,
Gaussian Prior, Reinforcement Learning

1. INTRODUCTION

Named Entity Recognition (NER) aims to locate information
entities and identify their corresponding categories, which is
widely used in various downstream NLP tasks, including en-
tity linking [1, 2] and relation extraction [3, 4, 5]. Nested
NER refers to that a named entity contains one or more en-
tities within it or is a part of them, such as “South African”
and “South African scientists”. Entity nested circumstances
are common in different languages and domains. Traditional
sequence labeling methods fail to handle nested NER since
one token may belong to different entities.

∗Corresponding author. This work is supported by the National Key Re-
search and Development Program of China (No.2019YFB1704003), the Na-
tional Nature Science Foundation of China (No.62021002), Tsinghua BNRist
and Beijing Key Laboratory of Industrial Big Data System and Application.

Lots of efforts have been devoted to solve nested NER
tasks effectively in recent years. Proposed methods could
be mainly divided into sequence-based, span-based and
hypergraph-based methods [6]. The sequence-based methods
[7, 8] treat nested NER as a sequence labeling or entity span
sequence generation task. However, the former leads to a
large growth of label categories and the sparse label distribu-
tion when combining BIO labels, while the latter faces expo-
sure bias [9] due to fixed order generation. The span-based
methods [10, 11] consider the nested NER as a classification
task of all the candidate entity spans extracted from the input
sentence. Obviously, this method brings high computational
costs for numerous meaningless spans and ignores the de-
pendency between nested entities. The hypergraph-based
methods [12, 13] construct hypergraphs based on the nested
structure and introduce graph neural network, which may
suffer from the spurious structure of hypergraphs.

To reduce the above drawbacks, this paper further ex-
plores structural and semantic characteristics of nested en-
tities, including (1) entity triplet recognition order and (2)
boundary distance distribution of nested entities. For exam-
ple, it is intuitively reasonable that the identification of “South
African” may promote the prediction of “South African sci-
entists” entity. Inspired by methods with unfixed triplet order
[14, 15], we hope that the model can learn an optimal recog-
nition order and get rid of the teacher forcing of gold triplet
orders. In addition, we obtain boundary distance statistics of
all the nested entity pairs in multiple corpora. From Figure 1,
we assume the boundary distance frequency of nested entity
pairs can be naturally formulated into Gaussian distribution.

Armed with these observations, we propose a Gaussian
Prior Reinforcement Learning framework named GPRL to
learn the entity recognition order and utilize the boundary po-
sition relation of nested entities. As shown in Figure 2, GPRL
converts the nested NER task into an entity triplet sequence
generation task and uses the pre-trained seq2seq model BART
[16] with pointer mechanism [17] to generate the entity triplet
sequence. In order to improve the ability of the model to rec-
ognize nested entities, we apply the Gaussian prior adjust-
ment of nested entity pairs to the entity boundary probability
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Fig. 1. The boundary distance frequency distribution of all
the nested entity pairs in ACE 2004 training data.

predicted by pointer network. We further take the recognition
order into consideration and model the entity triplet genera-
tion as a reinforcement learning (RL) process. Based on the
generation quality of each triplet, we assign a reward to quan-
tify model behavior and optimize the network through max-
imizing the rewards. Experimental results show that GPRL
achieves state-of-the-art on three public datasets and outper-
forms strong baselines on F1 score by 0.59% on ACE 2004,
0.47% on ACE 2005 and 0.06% on GENIA.

2. PROPOSED MODEL

2.1. Entity Triplet Generator (ETG)

The nested NER task could be formulated as follows: given
an input sentence of n tokens X = [x1, x2, ..., xn], we ex-
pect to identify all the named entities and obtain the target
Y = [s1, e1, t1, ..., sk, ek, tk], where k is the total number of
entities, si, ei(i ∈ [1, k]) indicate the start and end index of
the i-th entity respectively and ti represents the entity type.
To get such entity span sequence, we select the pre-trained
seq2seq model BART as the entity triplet generator.

The encoder deals with the raw sentence X to get the se-
quence representation He ∈ Rn×d as:

He = BartEncoder(X), (1)
where n is the sentence length and d is the hidden dimension.

The decoder aims to predict boundary index or entity type
at each time step Pt = P (ŷt|He, Y<t). However, the tar-
get label sequence cannot be put into the decoder network di-
rectly since it contains both token index and entity type. Fol-
lowing [8], we also design an Index2Token mode to convert
predicted indexes into practical tokens.

ŷt =

{
Tyt , if yt ≤ k
Xyt−k, if yt > k,

(2)

where T is the entity type list with the length k.
After converting indexes into tokens in this way, we can

put the encoder output and target sequence into the decoder

module and obtain the last hidden state, which formulates as:
hdt = BartDecoder(He; Ŷ<t), (3)

where Ŷ<t = [ŷ1, ŷ2, ..., ŷt−1], representing the ground truth
or the predicted span sequence for time step t.

Then we adopt the pointer mechanism to generate entity
index probability distribution Pt as:

Td = BartTokenEmbed(T), (4)

Lt = [Td ⊗ hdt ;H
e ⊗ hdt ], (5)

Pt = Softmax(Lt), (6)

where BartTokenEmbed means the token embeddings shared
between encoder and decoder; Td ∈ Rk×d; Lt ∈ Rt×(k+n);
⊗ means the dot product of multi-dimension vectors and [·; ·]
concats the two vectors in the first dimension.

2.2. Gaussian Prior Adjustment (GPA)

Through pointer network, we can copy words from input se-
quence instead of searching the whole output vocabulary. In
Eq.6, the Lt vector works as the attention distribution, con-
centrating on the token with the maximum score in the origi-
nal sequence. As discussed above, the boundary distance be-
tween nested entity pairs roughly obeys the Gaussian distribu-
tion, which indicates that the closer distance between the start
(or end) positions of nested entity pairs has higher probability.
Next, we adopt this characteristic to adjust the Pt distribution,
enhancing the recognition of nested entity boundaries.

In the process of generating entity triplet sequence Y ,
once getting the j-th triplet (sj , ej , tj), we search the already
generated triplet list forward. If the i-th triplet has the nested
relationship with the j-th triplet (i < j), we utilize bound-
ary position of the previous nearest i-th entity to adjust the
boundary distribution of current j-th entity by Gaussian prior.
For simplicity, we choose the standard normal distribution
with 1/(2π) variance whose probability density function is
φ(d) = e−πd

2

, d is the distance between token positions.
Then we replace the coefficient π with a learnable parame-
ter and compute Gaussian distribution by the relative distance
between token position of input sentence and boundary posi-
tion of the i-th entity.

Pgass h(m) =
e−λ(m−si)

2∑n
b=1 e

−λ(b−si)2
, (7)

Pgass t(m) =
e−µ(m−ei)

2∑n
b=1 e

−µ(b−ei)2
, (8)

where m ∈ [1, n] is the token index, λ and µ are learnable
parameters. Then the final probability distribution of the j-th
entity boundary is:

Psj = α ∗ Phead + (1− α) ∗ Pgass h, (9)
Pej = α ∗ Ptail + (1− α) ∗ Pgass t, (10)
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Fig. 2. Overview of the proposed GPRL framework for nested NER. Since the input sentence is selected from ACE 2004
containing 7 entity categories, we conduct the 7 shift to the token index. Thus index 1-7 represents different entity categories.

where α is the hyper-parameter, Phead and Ptail represent the
probability distribution of the head and tail token after the
pointer network in Eq.6 respectively.

2.3. Entity Order Reinforcement Learning (EORL)

In conventional seq2seq framework, entity triplets need to be
generated one by one in a fixed order, which ignores the inter-
nal dependency between nested entities and suffers from ex-
posure bias. To learn the recognition order of nested entities,
we propose the Entity Order Reinforcement Learning (EORL)
component, which optimizes the ETG-GPA model with RE-
INFORCE algorithm [18]. The loop in Figure 2 represents
a RL episode, where the ETG-GPA model reads in an input
sentence and generates the entity triplet sequence freely. We
calculate the rewards based on the generation quality of each
triple and optimize the model through trial and error. Now we
explain the main ingredients of EORL in detail.

State: Given the raw sentence of n tokensX = [x1, x2, ...
, xn] and the already generated entity index sequence Ŷ<t, we
use st to denote the optimization state at time step t.

st = (Ŷ<t, X, θ) (11)
where θ represents parameters of ETG-GPA model.

Policy: We use the policy gradient algorithm in reinforce-
ment learning, aiming to train a policy network that can gen-
erate entity triplets without fixed order limitation. The policy
network is parameterized by the ETG-GPA model fθ.

Action: The action is the boundary index or entity type ŷt
sampled from output probability distribution of the ETG-GPA
model at time step t, which contains two cases as Eq.2.

Reward: The reward is used to signal the generation
quality of entity triplets and guide the model training, which
plays an important role in RL process [14, 19]. Due to the na-
ture of seq2seq model, we cannot calculate the reward of each
step directly since it is difficult to evaluate the quality of a sin-

gle token. Therefore, we assign the reward every three time
steps when a new triplet has been generated. One high-quality
triplet needs to meet: (1) Its boundary and category are both
correctly predicted; (2) It is not the same as any triplet previ-
ously generated. When we obtain such good triplet after three
steps, we give the reward 1 to each of these steps. Meanwhile,
we define the empty triplet as entity triplets containing ending
index or correct boundary and assign the reward 0.5 to each
corresponding step. In other circumstances, the reward is
highly close to 0. Assuming the ETG-GPA model generates
a new entity triplet Fi in three steps (ti, ti+1, ti+2), the gold
triplet list is G, the already generated triplet list is V , the
reward assignment can be formulated as:

ri = ri+1 = ri+2 =


1, if Fi ∈ G and Fi /∈ V
0.5, if Fi is empty triplet
0, otherwise

(12)

Reinforcement Learning Loss
According to the REINFORCE algorithm and policy gradi-
ent mechanism, we optimize the ETG-GPA network by EORL
through the following reinforcement learning loss:

L(θ) = 1

T

T∑
t=1

loss(fθ(X,Y<t), ŷt) ∗ rt, (13)

where loss is the cross entropy loss function, rt is the reward,
fθ represents the policy network that generates the entity in-
dex and ŷt is the sampled action from the index probability
distribution. We minimize L(θ) to optimize the fθ model.

3. EXPERIMENTS

3.1. Datasets and Settings

To evaluate the proposed model, we conduct main experi-
ments on three public nested NER datasets: ACE 2004 [20],



Model ACE 2004 ACE 2005 GENIA
Sequence-based Methods
Seq2Seq [7] 84.40 84.33 78.31
Pyramid [23] 86.28 84.66 79.19
Sequence-To-Set∗ [15] 87.26 87.05 80.44
BartNER† [8] 86.84 84.74 79.23
Others
Biaffine∗ [24] 86.70 85.40 80.50
Locate-and-Label∗ [6] 87.41 86.67 80.54
Triaffine∗ [25] 87.40 86.82 81.23
W2NER∗ [26] 87.52 86.79 81.39
Lexicalized-Parsing∗ [27] 87.90 86.91 78.44

Ours GPRL† 88.49 87.52 81.45
−GPA 87.62 86.99 80.51
−EORL 87.06 86.27 79.93

Table 1. Overall performances on nested NER datasets.
BERT is the default encoder, ∗ represents BERTlarge and †
represents BARTlarge encoder. We report the average F1 re-
sults with 5 runs of training and testing.

ACE 2005 [21] and GENIA [22]. For the evaluation metrics,
we employ the span-level F1 score.

For three NER datasets, we add entity tags (“Person”,
“Location”, etc.) as special tokens to the BART Tok-
enizer. Towards model components, we use the pre-trained
BARTlarge as Entity Triple Generator. In Gaussian Prior
Adjustment, we select weight coefficient α in a range of [0.7,
0.9] to avoid excessive interference brought by the prior prob-
ability. During model training, we first pre-train ETG-GPA
model with cross-entropy loss to achieve over 90% of the best
supervised learning performance, then train the model with
reinforcement learning loss. By this way, we can improve
the convergence rate and get stable running results. We use
the AdamW optimizer with the learning rate set to 5e-5 for
supervised learning, 5e-6 for RL learning respectively.

3.2. Results and Comparisons

Since the proposed model bases on seq2seq structure, we first
compare it with several outstanding sequence-based meth-
ods: Seq2Seq [7], Pyramid [23], Sequence-To-Set [15] and
BartNER [8]. Then we introduce other state-of-the-art mod-
els for further comparison: Biaffine [24], Locate-and-Label
[6], Triaffine [25], W2NER [26], Lexicalized-Parsing [27].

The overall performances of our proposed model on
nested datasets are shown in Table 1. We could observe that
GPRL outperforms all the baseline models consistently on
each dataset. To be specific, compared with previous SOTA
models, GPRL achieves +0.59% F1 higher on ACE 2004 and
+0.47% F1 higher on ACE 2005. Meanwhile, GPRL achieves
the comparable result (+0.06% F1 higher) with W2NER [26]
on GENIA dataset. Experimental results demonstrate the
effectiveness of GPRL model to identify nested entities.
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Fig. 3. Comparisons of F1 score on entity boundary detection.

3.3. Ablation Study and Further Analysis

To further prove the effectiveness of several modules in GPRL
model, we conduct necessary ablation experiments. As shown
in Table 1, when we remove the GPA component, the F1 score
decreases by 0.87% on ACE 2004, 0.53% on ACE 2005 and
0.94% on GENIA. Since the Gaussian prior is designed di-
rectly from nested entity pairs without considering flat enti-
ties, we believe GPA helps to recognize nested entity bound-
aries. If we delete the EORL module and optimize ETG-GPA
network only with cross entropy loss, the F1 performance de-
creases by 1.43% on ACE 2004, 1.25% on ACE 2005 and
1.52% on GENIA, respectively. This indicates that the re-
inforcement learning process can learn the proper recogni-
tion order of entities and weaken the training inference gap
through negative samples for seq2seq models.

The main purpose of GPA is to increase the attention score
of neighboring tokens and decay the importance of distant
ones for previous nested boundary. To further prove its ef-
fectiveness, we compare the change of F1 on entity boundary
detection. As shown in Figure 3, the F1 with GPA is obviously
higher on three datasets, indicating GPA helps the model lo-
cate nested boundaries and redress incorrect predictions.

We finally study cases where entity locating and classify-
ing are improved with EORL. From Table 2, the EORL solves
the problems of less labeling and error identification effec-
tively. We also discover that EORL tends to identify internal
entities first in nested situation and learns a proper genera-
tion order of multiple entities. Model with EORL can capture
the dependencies and interactions between nested entities by
generating entity triplets in flexible orders.

4. CONCLUSION

In this paper, we propose a novel reinforcement learning
seq2seq model GPRL for nested NER. We explore the bound-
ary distance distribution of nested entity pairs, which is for-
mulated as a Gaussian prior to adjust the pointer scores and
helps to identify nested boundaries. Different from conven-
tional seq2seq model, we make the model generate entity
triplets freely through reinforcement learning process so that
it can actually learn the recognition order. Experiments on
three nested NER datasets show GPRL achieves SOTA per-
formance over strong baselines.



(A (U.S.) tourist) was detained after photographing a riot in (the
province of (Irian Jaya)).
Label: [0, 2, PER, 1, 1, GPE, 10, 14, GPE, 13, 14, GPE]
w/o EORL: [0, 2, PER, 1, 1, GPE, 13, 14, GPE]
w. EORL: [0, 2, PER, 1, 1, GPE, 13, 14, GPE, 10, 14, GPE]

The deadly disease attacks ((African) villages) and kills (up to
90% of (those infected)).
Label: [4, 4, GPE, 4, 5, GPE, 8, 13, PER, 12, 13, PER]
w/o EORL: [4, 4, GPE, 4, 5, GPE, 10, 13, PER, 12, 13, PER]
w. EORL: [4, 4, GPE, 4, 5, GPE, 12, 13, PER, 8, 13, PER]

Table 2. Predictions with/without EORL, where red repre-
sents incorrect boundary location, blue represents change of
entity recognition order and the number is token index.
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