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ABSTRACT

BCI Motor Imagery datasets usually are small and have differ-
ent electrodes setups. When training a Deep Neural Network,
one may want to capitalize on all these datasets to increase the
amount of data available and hence obtain good generaliza-
tion results. To this end, we introduce a spatial graph signal
interpolation technique, that allows to interpolate efficiently
multiple electrodes. We conduct a set of experiments with
five BCI Motor Imagery datasets comparing the proposed in-
terpolation with spherical splines interpolation. We believe
that this work provides novel ideas on how to leverage graphs
to interpolate electrodes and on how to homogenize multiple
datasets.

Index Terms— graph signal processing, BCI, EEG, mo-
tor imagery, signal interpolation, DNN

1. INTRODUCTION

One important challenge in brain signals classification is the
lack of large, homogeneous datasets, such as those available
in computer vision. This is also true for Brain Computer Inter-
faces (BCI) where usually the electroencephalographic (EEG)
signal is collected from a few subjects with specific record-
ing setups (electrodes layout, sampling frequency, stimulation
paradigm). The lack of training data also explain why only re-
cently methods based on deep learning and transfer learning
have been applied to BCI signal decoding, with contrasting
results [1]. One way to tackle this limitation is to setup a joint
analysis on datasets. Such solutions usually rely on hand-
crafted features based on physiological priors or hardly inter-
pretable deep learning models. In this paper, we propose a
new method for merging EEG datasets based on graph signal
interpolation and show an application to BCI Motor Imagery
(MI) classification. A graph is learned from EEG data and a
graph signal interpolation technique is implemented to obtain
a unified, virtual, electrodes setup. This method does not re-
quire any prior and provides interpretable results in terms of
EEG spatial patterns.

Thanks to the Brittany region for its support.

2. RELATED WORK

2.1. BCI MI classification

BCI systems are based on the real-time measure of brain
signals (typically EEG) and usually need an offline training
phase during which the system is calibrated; then during the
operational phase the system classifies brain activity patterns
and translates them into commands for a device in real-time.
In current applications, a training dataset needs to be pre-
recorded from the user to have reliable systems, due to the
lack of classifiers able to generalise across subjects and EEG
setups [1]. To go towards calibration-free, high accuracy
BCI systems, a key feature is the ability to efficiently extract
knowledge from the variety of datasets available in literature
and transfer it to new subjects. However, the great majority of
the works in literature consider separate BCI datasets [2, 3].

Recently, an attempt to exploit information jointly from
different EEG datasets has been made with the NeurIPS
EEG Transfer learning challenge BEETL [4]. This challenge
aims at developing algorithms to transfer knowledge between
different subjects and EEG datasets and at defining a new
benchmark for EEG signals classification. In this challenge,
three source MI datasets are provided, and algorithms are
then tested on two unseen datasets. In order to train a unique
model on the ensemble of the source MI datasets, a first step
is to integrate data from different setups. In the context of
the challenge, simple solutions such as considering com-
mon electrodes (intersection) were proposed, which totally
disregards information of the dropped electrodes. Here we
propose a methodology that exploits information from all the
available electrodes based on graph signal interpolation.

2.2. Graph Signal Processing

An intuitive way to represent interactions between electrodes
in BCI context is to use spatial graphs. EEG signals can then
be seen as observations over this graph, with an added tem-
poral dimension. Graph Signal Processing (GSP) then of-
fers the tools to process such signals [5, 6]. In the context
of MI decoding, the use of GSP-based methods also brings
forward interpretability questions. In this setting, a weighted
graph G = 〈V, E〉 with vertices V and edges E ⊂ V × V is
used to model electrodes and their interactions. Such a graph
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can be equivalently represented by a symmetric weights ma-
trix W ∈ R|V|×|V| such that Wij = 0 if {i, j} 6∈ E . We
then note D ∈ R|V|×|V| the degrees matrix of G, such that
Dij =

∑|V|
k=1Wik if i = j and 0 otherwise. From these

two matrices, we can compute the Laplacian L = D −W
of G. Since L is real and symmetric, it can be diagonalized
as L = UΛU>, where U is a matrix of orthonormal vectors
associated with eigenvalues forming the diagonal matrix Λ,
sorted in increasing order. A signal s ∈ RN on G is an ob-
servation on each of its vertices. Its Graph Fourier Transform
ŝ = GFT(s) = U>s can be seen as an observation for each
graph frequency. Using those elements we can define the total
graph signal variation σ(s) of a signal s as:

σ(s) = s>Ls =

|V|∑
i=1

Λiiŝ
2
i =

|V|∑
i=1

|V|∑
j=1

Wij(si − sj)2 (1)

2.3. Interpolation of EEG Signals

Interpolating electrodes is a common step in many EEG pre-
processing pipelines and is usually needed to artificially repair
the signal from noisy electrodes or trials. Multiple methods
allow to perform spatial interpolation without using graphs.
The reference method, implemented in many pipelines, is the
Spherical Spline interpolation [7] with Legendre polynomi-
als. Other methods use signal correlation [8] or deep learning,
like [9] which is using a deep learning generator, or [10] with
a deep convolutional network. However, these methods suffer
from either high reconstruction error or lack of interpretabil-
ity. Other methods allow to perform interpolation with the
help of graphs, like the work of [11], where structural and
functional connectivities are used along with a deep graph
convolutional network. Their method is designed to interpo-
late in multiple dimensions (frequency, spatial and temporal).
Other works try to optimize a graph signal criterion, like spar-
sity [12], or a non smooth criterion [13], but the last method
is designed to perform temporal interpolation.

2.4. Homogenizing BCI datasets

Few approaches have been explored to solve the problem in-
troduced in Section 2.1 of exploiting information jointly from
different EEG datasets. In general, datasets differ in sev-
eral ways (e.g sampling frequency, preprocessing, recording
paradigm, electrode setup). Some of these inhomogeneities
can be solved by simply windowing or resampling the EEG
signals, while unifying the electrode setup remains a chal-
lenge. To solve it, different methods have been proposed.
The BEETL challenge [14] winners simply reduce the spatial
dimension by taking the intersections of the datasets. [15]
performs PCA, which also implies a loss of information. To
overcome this limitation, some techniques propose to learn
another representation with adversarial learning [16] while
others propose to augment the spatial dimension by going into
the Riemannian space [16]. We propose to increase the spatial

dimension by staying in the electrode space and interpolate
the electrodes using a graph variation optimization.

3. METHODOLOGY

Our approach consists in considering each BCI dataset as a
partial sampling of a virtual, larger collection of electrodes
and then using a graph interpolation technique to “recover”
the missing electrodes. The graph is learned from a different
EEG dataset containing all electrodes. We then use this graph
to homogeneize the considered BCI datasets and train them
altogether in a similar setup as for the BEETL challenge.

3.1. Graph Signal Interpolation

We propose a graph signal interpolation technique that con-
sists of minimizing graph signal variation in Equation (1)
while only knowing a part of the signal. We show here that
this problem admits a closed form.

Consider a graph G where electrodes are vertices V , with
Laplacian matrix L ∈ R|V|×|V|. Let s ∈ R|V| be a signal
on G. In our problem, we consider that s has some missing
entries, due to absence of some electrodes. The set of such
missing electrodes is denoted M ⊂ V , and its complement
HHM = V \ M. We note sZZM

=
{
si∈ZZM

}
the observed part

of s, and sM = {si∈M} its missing part. We note LM ∈
R|M|×|M| the submatrix of L where we only keep the rows
and columns with indices inM, and LMZZM

∈ R|M|×|ZZM| the
submatrix of L where we only keep the rows with indices in
M, and the columns with indices inHHM.

Proposition 1. The solution sM that optimizes the variation
problem Equation (1) in our setup is directly given by the fol-
lowing closed form:

sM = −L−1MLMZZM
sZZM

(2)

Proof. We start from:

σ(s) = s>Ls =

|V|∑
i=1

|V|∑
j=1

siLijsj (3)

We can decompose Equation (3) into 4 terms: 1. i ∈ M and
j ∈ M; 2. i ∈ M and j /∈ M; 3. i /∈ M and j ∈ M;
4. i /∈ M and j /∈ M. In our setup 2. and 3. are symmetric,
and 4. is a constant. So we have:

σ(s) = s>MLMsM + 2
∑
i∈M

∑
j /∈M

siLijsj + constant , (4)

where σMZZM
(s) = 2

∑
i∈M

∑
j /∈M siLijsj corresponds to

the two symmetric parts 2. and 3. in Equation (4). We have:

∀i ∈M,
∂σMZZM
∂si

= 2
∑
j /∈M

Lijsj = 2
(
LMZZM

sZZM
)
i
, (5)



where we denote as (·)i the ith entry of the vector in parenthe-
ses. We then obtain:

∇σ(sM) = 2(LMsM+LMZZMsZZM) = 0⇒ sM = −L−1
MLMZZMsZZM

(6)

Reconstructing entries inM therefore requires the use of
a graph. To do so, we propose to learn it from EEG signals.

3.2. Learning the graph

In order to reconstruct the missing entriesM in a signal, we
propose to learn a graph G of V electrodes. We consider here
three different graphs:

1. A spatial graph, where the adjacency matrix is based
on the locations of the sensors. We binarize this graph
based on a radius. This graph has the same benefits as
the method Spherical Spline interpolation, and does not
need additional data except the location of the sensors;

2. We add information on top of the spatial graph, by
weighting its edges with Weighted Phase Lag Index
(WPLI) [17] scores computed from a dataset featur-
ing all the electrodes. A similar graph was proposed
in [18];

3. We learn the adjacency matrix of an optimal graph by
gradient descent, in order to build a graph that opti-
mizes our signal variation problem. We use as loss
function 1− R2, with R2 the coefficient of determina-
tion. At each step of the learning process, we randomly
mask half of the electrodes and try to reconstruct them.

In a first step, we propose to learn the graph using a large
dataset A containing all electrodes. In a second step, we use
the learned graph to reconstruct missing electrodes in another
dataset B. For that we experiment two ways of doing it. 1. Di-
rectly transferring, which means using the learned graph on A
to reconstruct B; 2. Fine-tuning the learned graph A towards
the dataset B. For this, a second phase where we jointly train
using A and B is needed to adapt the graph on B. At each
step, we solve two different problems. The first one is on B
where, we randomly mask half of the electrodes of the dataset
B and we try to reconstruct them. The second problem is on
A where we mask all the electrodes which are A but not in
B, and we try to reconstruct them. The loss is therefore a
weighted average of the losses of the two problems (each loss
is still 1−R2). Doing that helps prevent overfitting on dataset
B while fine tuning. It also helps to align dataset B to dataset
A which will help to homogenize multiple datasets in the sec-
ond set of experiments.

Usefulness of the graphs for reconstructing missing en-
tries is evaluated on controlled problems, where we artificially
mask electrodes, and evaluate the reconstruction capabilities
of a given graph.

4. EXPERIMENTS

4.1. Interpolation of electrodes

We used multiple open access EEG MI datasets. Which are
all available on MOABB [19] 1. The code of our experiments
is also available at our Github2.

MI dataset Subjects Electrodes Samples
Sampling
frequency Dur. Tasks

Schrimister [20] 14 76 13484 500 Hz 4 s. L/R/F/R
BNCI2014 [21] 9 22 5184 160 Hz 3 s. L/R/F/T
Cho2017 [22] 52 64 9880 160 Hz 3 s. L/R
PhysionetMI [23] 109 62 9838 160 Hz 3 s. L/R/F/BH/R
Zhou2016 [24] 4 14 1800 160 Hz 3 s. L/R/F
Shin2017 [25] 29 22 1740 160 Hz 3 s. L/R

Table 1: MI datasets considered. L = Left hand, R = Right
hand, F = Feet, R = Rest, BH = Both hands

We have chosen to use the Schrimister dataset to learn the
union graph. This dataset has the particularity to contain al-
most all of the electrodes of the datasets that we consider later
in our application case. This dataset is also used to learn the
optimal graph, and to compute WPLI. We take all the data
available and apply a band-pass filter at [2,40] Hz. All the
other datasets are used for two purposes: 1. To evaluate the
performance of various interpolation techniques Section 4.1;
2. To create a similar setup than in the BEETL challenge and
evaluate the performance of our interpolation method to ho-
mogenize datasets Section 4.2. In order to homogenize the
5 remaining datasets, we downsample to the lowest sampling
frequency (160 Hz), use the first 3 seconds starting at the cue,
and apply a [2,40] Hz band-pass filter.

We notice in Fig. 1 that the WPLI weighted graph allows
to slightly better reconstruct the signal than the spatial graph.
On the other hand, the Spherical Spline method is more effi-
cient than the spatial and WPLI graph. We show that learning
the graph outperforms all other graphs even with up to 57
missing electrodes. In the rest of this paper, we will therefore
consider the learned graph.

We then evaluate the ability of the learned graph to recon-
struct signals on the other datasets of our study. In Table 2,
we observe that directly using it (the Transfer line), is not very
efficient. This indicates that the graph is over-adapted to the
Schrimister dataset on which it is trained. To compensate for
this, we fine-tune it as described in Section 2.4 to each dataset
individually.

By doing so, we prove the interest of the method that con-
sistently outperforms (the Transfer + FT line) the Spherical
Spline method, on all datasets, except BNCI where the fine
tuning results are similar. In Fig. 1, we display the learned
graph after it is trained on the Schrimister dataset. We ob-
serve a cluster in the Centro-Fronto-Parietal area on the right
side around C4, and symmetrically on the left side around C3.

1http://moabb.neurotechx.com
2https://github.com/elouayas/eeg_interpolation

http://moabb.neurotechx.com
https://github.com/elouayas/eeg_interpolation
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Fig. 1: (a, b) Reconstruction performances for various number of missing electrodes on Schrimister (among 76 electrodes). (c)
Learned graph. The size of the nodes is weighted by their strengh, and the thickness correspond to their weights. Both of them
are in a square scale in order to accentuate the gaps.

Those observations make sense as those are regions and con-
nections recruited during a motor imagery task [26].

Physionet [23] BNCI [21] Cho [22] Shin [25] Zhou [24]
Transfer 52.5±3.6 56.3±30.4 18.8±11.8 33.8±17.3 8.3±18.1
Transfer + FT 86.1±1.2 93.2±2.8 77.1±2.3 90.4±1.7 70.0±9.2
Spatial 59.3±2.6 79.3±4.8 35.0±6.8 73.4±4.2 32.9±18.4
Spherical 80.6±4.5 94.9±1.5 75.6±4.4 85.9±4.2 54.1±21.8

Table 2: Reconstruction R2 of half of the electrodes for vari-
ous methods and various datasets

4.2. Application to multi BCI dataset training

In order to evaluate the efficiency of our interpolation method
to homogenize different BCI datasets, we decided to use a
setup similar to the BEETL challenge. For this, we took the
same 3 source datasets (BNCI, Cho and PhysionetMI) and
two new target datasets (Shin and Zhou). We use only the
first 40 trials for each subjects of the two target datasets, and
try to generalize to the rest of the dataset. We propose to use
a deep learning model to classify our data. For this we train a
1D CNN jointly on the 4 datasets. The input of the model has
for dimension the number of electrodes, so the signals of each
electrode enter individually in a 1D convolution channel. The
network is composed of two parts: 1. A backbone common to
all datasets (with a unique entry, and multiple convolutional
layers); 2. Multiple classification heads unique to each dataset
(3 for the source datasets and 1 for the target dataset).

We compare through this setup the classification perfor-
mances of taking only the intersection of electrodes of the
4 datasets to the performances of interpolating the missing
electrodes at the intersection. We compare two way of in-
terpolating, the first one consists in interpolating all the elec-
trodes present in the 4 datasets and the second one consists
in interpolating and selecting only the electrodes of the tar-
get dataset which is evaluated. Before training our models we
align our data with Euclidean alignment [27], and resample
the 4 datasets by oversampling the smaller datasets.

In Table 3, we notice that interpolating only the electrodes
of the target dataset is more efficient than interpolating all the
electrodes of the 4 datasets. This could be due to the fact that
the information needed to classify a target dataset is contained
within its electrodes, and that it is not necessary to go and
get it artificially in those of the others. On the other hand
it is useful to be able to exploit at least all its electrodes by
interpolating the 3 source datasets. Another conclusion is that
it is not always worth interpolating using our method and this
procedure. If we look at the Zhou results, we see that the
intersection is the one which is performing the better. This
difference in results could be explained by the fact that the
difference between electrodes intersection and union is very
drastic for Shin, differently from Zhou.

Shin [25] Zhou [24]
Accuracy N Accuracy N

Intersection 53.2±2.8 2 61.2±2.0 9
Dataset 63.2±2.3 22 56.2±4.8 14
Union 62.3±2.1 76 46.4±2.8 76

Table 3: Generalization accuracy on the two target dataset. N
stands for number of electrodes. ”Intersection” stands for the
electrodes common to the 4 datasets. ”Dataset” corresponds
to the electrodes of the dataset in the column. ”Union” is the
union of electrodes in all 5 datasets.

5. CONCLUSION

A new and efficient electrode interpolation technique exploit-
ing GSP tools has been proposed. We have illustrated the
interest of our method to homogenize datasets. Our method
allows to interpolate electrodes efficiently, and some results
open new questions, especially on how one should homoge-
nize datasets in the case where the intersection of electrodes
is not reduced to its bare minimum.
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