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ABSTRACT

Deep neural networks (DNNs) are sensitive and susceptible
to tiny perturbation by adversarial attacks which causes er-
roneous predictions. Various methods, including adversarial
defense and uncertainty inference (UI), have been developed
in recent years to overcome the adversarial attacks. In this
paper, we propose a multi-head uncertainty inference (MH-
UI) framework for detecting adversarial attack examples.
We adopt a multi-head architecture with multiple prediction
heads (i.e., classifiers) to obtain predictions from different
depths in the DNNs and introduce shallow information for
the UI. Using independent heads at different depths, the nor-
malized predictions are assumed to follow the same Dirichlet
distribution, and we estimate distribution parameter of it by
moment matching. Cognitive uncertainty brought by the ad-
versarial attacks will be reflected and amplified on the distri-
bution. Experimental results show that the proposed MH-UI
framework can outperform all the referred UI methods in the
adversarial attack detection task with different settings.

Index Terms— Uncertainty inference, adversarial attack
detection, image recognition, Dirichlet distribution

1. INTRODUCTION

Deep neural networks (DNNs) are powerful learning tools in
computer vision such as image recognition [1] and image seg-
mentation [2]. However, DNNs have a inevitable problem
which concerns with the their stability with respect to tiny
perturbations on their input images that may be perceived by
human eyes [3]. Their predictions may be arbitrarily affected
by the random or targeted imperceptible perturbation.

Adversarial attack task [4] was proposed to study the best
way on confusing the DNNs by generating adversarial at-
tack examples with the aforementioned perturbations, e.g.,
fast gradient sign method (FGSM) [5]. These perturbations
are commonly found by optimizing the input images to max-
imize the prediction errors and minimize additional pertur-
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bations simultaneously [6], i.e., white-box attacks. The ad-
versarial attack examples can greatly affect the security and
reliability of the DNNs.

In recent years, in order to overcome the adversarial at-
tacks, adversarial defense methods usually concentrate on
random smoothing [7], adversarial training [8], and Jacobian
regularization [9]. Other work [10, 11, 12, 13] introduced
uncertainty inference (UI) for misclassification and out-of-
domain detection and estimated the prediction uncertainty of
a DNN, which can be treated as defense techniques for the
adversarial attacks. Compared with the original adversarial
defense methods that were proposed for one specific adversar-
ial attack method, the UI methods can be commonly adapted
to dispose different adversarial attack methods [14, 15].

Most of the recently proposed UI methods can be divided
into Monte-Carlo (MC) sampling based methods [11] and
direct estimation based ones [10, 12, 13]. The former utilized
dropout [16] to generate multiple subnetworks and obtained
samples of predictions by them to compute variance as the
uncertainty, which is computational expensive. The latter
enhanced the training procedure by additional loss func-
tions [10, 12, 13] and/or modules [10], and directly inferred
the uncertainty with the one-shot predictions, which is highly
dependent on the learning ability of a DNN itself [10] and
may be affected by the quality of extracted features. There-
fore, how to construct a UI model that overcomes both of the
drawbacks should be carefully investigated.

On the basis of the previous work [10, 11, 12, 13], we
propose to perform uncertainty analysis on the output of the
DNNs to determine whether the corresponding input image
is an adversarial attack example. In this paper, we propose
a Multi-head Uncertainty Inference (MH-UI) framework for
detecting the adversarial attack examples. As the shallower
layers extract texture information and the adversarial noises
usually reflect in the texture, we adapt a multi-head architec-
ture, which is similar to the GoogLeNet-style one with mul-
tiple prediction heads [17], to introduce shallow information
and obtain predictions from different depths in a DNN. Inde-
pendent classifiers (i.e., fully connected (FC) layers) are uti-
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Fig. 1: Structure of the proposed multi-head uncertainty inference (MH-UI). We take a DNN with 5 layers for image recognition
as an example. Images are input into the multi-head architecture-based model and obtain multiple predictions from each head.
For the clean data input, they usually gather in one specific class, while those of the adversarial data respectively focus on
distinct classes. The predictions are treat as samples for Dirichlet distribution estimation.

lized in the different depths and the predictions of each are
assumed to be identically Dirichlet distributed samples where
distribution parameters are estimated by moment matching.
Experimental results show that the proposed MH-UI frame-
work can outperform all the referred UI methods in the ad-
versarial attack detection task with different settings.

2. MULTI-HEAD UNCERTAINTY INFERENCE

2.1. Multi-head Architecture

In this section, we introduce the multi-head architecture for
the MH-UI framework. Figure1 shows that a DNN stacked by
N layers (blocks) for image recognition can be represented as

yN = gN � f(x)
= gN � fN � fN−1 � · · · � f2 � f1(x), (1)

where x ∈ R3×W×H (W and H are width and height, re-
spectively) and yN ∈ RC (C is class number) are an input
image and the corresponding normalized predictions, respec-
tively, fn, n = 1, · · · , N is the nth layer, and � is the stack
operation. And gN is the classifier of the DNN, which is con-
structed by multiple FC layers with a Softmax layer behind.

Recalled that the shallower layers extract texture infor-
mation and the adversarial noises usually reflect in the tex-
ture. The texture information in the shallower layers should
be helpful for resisting the adversarial noises and detecting
the adversarial attack samples. Thus, we introduce auxiliary
classifier, namely head, for each layer in order to access infor-
mation from different semantic levels. Here, we define their
corresponding normalized predictions

{
y1,y2, · · · ,yN−1

}
(yn ∈ RC , n = 1, · · · , N ) as

yn = gn � fn � fn−1 � · · · � f2 � f1(x), (2)

where gn is the head for the nth layer. Note that fn can be set
as any architecture, not only inception block [17].

Since yn is normalized, we roughly assume that it fol-
lows Dirichlet distribution, which is a common assump-
tion [12, 13]. Here, we further define all the normalized
predictions of the heads (gN can be also considered as a
head) as samples generated from an identical Dirichlet dis-
tribution Dir(α) with C-dimensional distribution parameter
vector α. By further analyzing all the predictions, we can
obtain the uncertainty of x and apply the uncertainty for final
adversarial attack detection.

2.2. Uncertainty Inference

In this section, we introduce the way to infer the uncertainty
of the input image x. After training the whole model f with
the heads {g1, · · · , gN}, the identically Dirichlet distributed
predictions y =

{
y1,y2, · · · ,yN−1

}
are obtained. As defin-

ing Dir(α) for yn, we then estimate the parameter α =
{α1, α2, · · · , αC} by the aforementioned samples.

Here, we match the first- and second-order moments be-
tween y and Dir(α) according to the moment matching
method in [18] by{

E [y] = α
α0

Var [y] = α•(α0−α)
α2

0(α0+1)

, (3)

where α0 =
∑N
n=1 αn and • is Hadamard product. The ex-

pectation and variance of y are ddenoted by E [y] and Var [y],
respectively, and are defined as{

E [y] = 1
N

∑N
n=1 yn

Var [y] = 1
N−1

∑N
n=1(yn − E [y])2

. (4)



Table 1: Means of AUROC (%) on CIFAR-10 dataset of different head combinations under FGSM attack. The leftmost
column of the table represents the combined sequence of the different heads as 1: head {1− 3, 10}; 2: head {7− 10}; 3: head
{4− 10}; 4: head {1− 6, 10}; 5: head {1− 10}. The numbers in the brackets represent the heads involved in the uncertainty

calculation. Head 1 is the head for the first inception (closest to input). Head 10 is the final output of the model.

ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5 ε = 1.0
Max.P. Ent. Max.P. Ent. Max.P. Ent. Max.P. Ent. Max.P. Ent.

1 69.03 69.77 74.29 75.29 83.17 84.36 91.13 90.80 89.35 91.29
2 77.52 77.56 79.91 80.02 84.06 84.20 85.36 85.41 95.69 96.00
3 76.98 77.06 80.83 81.19 86.66 87.04 92.35 91.89 97.90 97.78
4 71.12 71.48 77.79 78.47 87.33 88.33 94.47 95.33 97.61 98.44
5 82.70 80.55 83.52 83.93 87.90 88.91 94.31 95.32 99.04 99.19

Table 2: Means and standard deviations of accuracy (%) of heads in MH-UI on CIFAR-10 and SVHN datasets.

Head Head1 Head2 Head3 Head4 Head5 Head6 Head7 Head8 Head9
CIFAR-10 67.6± 1.1 71.6± 1.3 81.6± 1.1 84.4± 1.2 88.3± 0.8 89.6± 0.5 92.0± 0.4 93.5± 0.4 93.2± 0.6

SHVN 65.8± 3.0 69.6± 2.7 79.8± 2.3 85.1± 1.5 88.6± 1.2 91.3± 1.1 92.5± 0.7 94.6± 0.3 95.2± 0.3

According to (3), we can obtain the value of α. The uncer-
tainty of an input image can be evaluated by max probability
(Max.P.= maxnmn) and entropy (Ent.= −

∑N
n=1mn ln(mn)),

and mn = αn−1
α0−N . When Max.P is larger or Ent. is smaller

than the threshold value, we consider the image is attacked.
The general adversarial attack method is to confuse the fi-

nal predictions, which accumulate errors from shallower lay-
ers and work with those of other heads difficultly. Such attack
samples have large cognitive uncertainty. Since each head
represents different depth of the DNN, their features are dis-
tinct. Therefore, some heads will become less confident when
encountering the attack samples and the possibility of error
recognition of the final predictions will be increased. When
taking into account them of other heads, which performs sim-
ilarly to an ensemble model, the aggregated predictions can
be corrected. The change brought by the increase of cogni-
tive uncertainty to the head output can be reflected on α and
then amplified, which allows us to evaluate α to determine
whether the input image is attacked.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

3.1. Implementation Details

In our experiments, we used GoogLeNet [17] and ResNet [19]
as the backbone and followed the experimental settings in [10,
12, 13]. We connected 9 heads (excluding the final classi-
fier) after each inception output for the GoogLeNet model
and 7 heads for the ResNet model. In the training proce-
dure, we first trained the backbones. we applied Adam opti-
mizer by following [12] with 100 epochs. We used 1-cycle
learning rate scheme, where we set initial learning rate as
7.5×10−4 and cycle length as 70 epochs for each dataset. All
other referred methods were undertaken in the same training
way. Then, we trained the heads in sequence. For the heads,

the learning rate was fixed as 0.001 with 50 epoch for each
dataset. We compared the MH-UI with MC dropout [20],
DPN [12], RKL [13], and DS-UI [10] for adversarial attack
detection in CIFAR-10 [21] and SVHN [22] datasets.

We introduced max probability and entropy of the esti-
mated Dirichlet distribution as metrics for uncertainty mea-
surement and adopted the area under receiver operating char-
acteristic curve (AUROC) [12, 13, 10]. The larger the values
of AUROC, the better the performance. For all the methods,
we conducted five runs and reported the mean of AUROC.

3.2. Ablation Study

We conducted ablation study on the CIFAR-10 dataset under
adversarial attack detection to discuss the head combination
configurations, as well as the combination of head effect. We
set five different combinations of heads in our experiment.
Table 1 shows the setting details and means of AUROC re-
sults. It can be observed that the model with lager num-
ber of heads used in the MH-UI performed better in most
of instances. Thus, we choose the combination of all the
head {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} in the following experiment,
which performed best in the ablation study.

3.3. Adversarial Attack Detection

Table 2 illustrates the accuracies on both CIFAR-10 and
SVHN datasets of different heads in the proposed MH-UI
and the referred methods. Different heads perform diversely
and gradually better among the increasing depth, while the
final accuracies of the last head in Table 3 achieve compara-
ble performance compared with the referred methods. The
classification accuracies in Table 3 is for convergence eval-
uation of model training in each method under clean image
setting. And all the methods can converge well and obtain



Table 3: Means and standard deviations of accuracy (%) of each method on CIFAR-10 and SVHN datasets.

Method MC dropout DPN RKL DS-UI MH-UI (ours)
CIFAR-10 93.22± 0.67 93.55± 0.34 93.67± 0.58 92.89± 0.77 93.11± 0.61

SVHN 93.60± 0.14 93.29± 0.23 93.32± 0.24 93.50± 0.34 94.12± 0.11

Baseline MC dropout DPN RKL DS-UI MH-UI (ours)
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
55

60

65

70

75

80

85

90

95

100

A
U

R
O

C
 (%

) o
f E

nt
.

(d) Ent. on SVHN

Fig. 2: Performance on CIFAR-10 and SVHN datasets. ε is the step size in the FGSM and selected in the set { n20}
20
n=1. The

dashed and solid lines in each subfigure present the MU-UI and the referred methods, respectively.
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(a) Max.P. with ResNet backbone
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(b) Ent. with ResNet backbone

Fig. 3: Performance on ResNet18 backbone with CIFAR-10
dataset. ε is the step size in the FGSM and selected in the
set { n20}

20
n=1. 8 heads were used to connect all basiclock

in ResNet18. The dashed and solid lines in each subfigure
present the MH-UI and the referred methods, respectively.

high accuracies. Our method can achieve competitive results
and does not reduce the accuracy of the original framework.

Figure 2(a) and (b) illustrate the performance of each
method in the adversarial attack detection for CIFAR-10
dataset. We used FGSM attack method in experiment and set
ε in the FGSM in the set

{
n
20

}20
n=1

. Comparing to different
methods, the MH-UI converges to lager value when ε grows
larger (ε > 0.2). And as ε is small, the MH-UI can perform
similar to the best one (RKL).

Figure 2(c) and (d) illustrate experimental result of each
method in the attacked sample detection on SVHN dataset.
As the SVHN dataset needs to classify the digital features
relatively simple, all methods perform better than those on
CIFAR-10. The MH-UI work better in two evaluation criteria.
And when ε approaches to 1, the AUROC of detecting attack
can converge to 98% in both Max.P. and Ent.

In summary, compared with other UI methods, the above
results show that our MH-UI method is effective on detecting
adversarial attack in different datasets.

3.4. Generalized Applicability

Furthermore, our method can be applied to other models. We
applied ResNet18 [19] as backbone. Different from the head
used in GoogLeNet, we used a three-layer FC net with 1024
hidden units for each hidden layer in each one. For other
comparing methods, we also built them with ResNet18 as
backbone. Figure 3 illustrates each method’s experimental
result with ResNet backbone. Our method also works well in
ResNet. When the samples are under heavy attack (ε >0.2)
the AUROC of Max.P. and Ent. can converge to 99%. These
result shows that our method can also be used in other models
backbone such as ResNet.

4. CONCLUSION

In this paper, we have proposed a multi-head uncertainty
inference (MH-UI) framework for detecting adversarial at-
tack examples. We adopted a multi-head architecture with
multiple prediction heads to obtain predictions from different
depths in the DNNs and introduced shallow information for
the UI. Using independent heads at different depths, the nor-
malized predictions are assumed to follow the same Dirichlet
distribution and the distribution parameter of it is estimated
by moment matching. The proposed MH-UI is flexible with
different head numbers and backbone structures. Experi-
mental results show that the proposed MH-UI framework
can outperform all the referred UI methods in the adversarial
attack detection task with different settings.
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