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ABSTRACT
We propose GANStrument, a generative adversarial model
for instrument sound synthesis. Given a one-shot sound as
input, it is able to generate pitched instrument sounds that re-
flect the timbre of the input within an interactive time. By ex-
ploiting instance conditioning, GANStrument achieves better
fidelity and diversity of synthesized sounds and generaliza-
tion ability to various inputs. In addition, we introduce an ad-
versarial training scheme for a pitch-invariant feature extrac-
tor that significantly improves the pitch accuracy and timbre
consistency. Experimental results show that GANStrument
outperforms strong baselines that do not use instance condi-
tioning in terms of generation quality and input editability.
Qualitative examples are available online1.

Index Terms— neural synthesizer, generative adversarial
networks, adversarial feature extraction

1. INTRODUCTION

Since the advent of computers, many musicians and re-
searchers have explored ways to generate music with com-
puters. There are two main approaches: direct synthesis of
music sounds including melody and accompaniment, and sin-
gle note synthesis followed by playing symbolic music like
MIDI. The former enables end-to-end music synthesis, but
has low controllability of generation. The latter enables MIDI
and timbre to be independently controlled and is compatible
with production flows in the music industry. In this paper, we
tackled instrument sound synthesis for the latter approach.

Realistic instrument sounds are typically synthesized with
samplers that utilize recorded one-shot sounds. Although ar-
bitrary sound materials can be exploited, it is difficult to syn-
thesize a completely new timbre or intelligently combine mul-
tiple sounds. In contrast, recently reported deep generative
models for audio synthesis [1, 2, 3, 4, 5, 6] have the potential
to generate and mix a variety of timbres by exploring the la-
tent space. Our aim is to design a neural synthesizer that com-
bines the flexibility of samplers with the generative power of
deep networks, thereby enabling users to freely control the
timbre by leveraging existing sound materials. For practical
use, it needs to not only be generalized to a variety of inputs
but also be able to generate high-quality audio with accurate
pitch within an interactive time.

1Audio examples are available on https://ganstrument.
github.io/ganstrument-demo/

Towards this end, we present GANStrument, a novel neu-
ral instrument sound synthesizer. To enable the model to ac-
cept various inputs, we focus on instance conditioning [7], a
new GAN training scheme for conditioning a model on in-
put features. In addition, we present a pitch-invariant fea-
ture extractor based on adversarial training that disentangles
the latent space and significantly improves pitch accuracy and
timbre consistency. Furthermore, use of the modern GAN ar-
chitecture, parallel sampling with spectrogram representation,
and carefully designed audio inversion enables high-quality
audio to be generated within an interactive time.

2. METHOD

As depicted in Fig. 1, the input waveform is first transformed
into a mel-spectrogram xi, and its feature hi is extracted with
the feature extractor fφ. It is fed into the generatorG together
with pitch p and noise z to synthesize a mel-spectrogram xg,
which is transformed into a waveform by optimization-based
audio inversion. Feature extractor fφ is first trained by incor-
porating the pitch-adversarial loss into a standard classifica-
tion loss. Using a frozen feature extractor, we jointly train the
generatorG and discriminatorD with input neighborhoods as
real samples.

2.1. Instance conditioning

Class-conditional GANs partition the entire data distribu-
tion into multiple distributions without overlap. In con-
trast, instance-conditioned GAN [7] partitions the entire
data distribution into many overlapping local distributions
and thereby model a complex distribution. By conditioning
both the generator and discriminator with instance feature
hi = fφ(xi) and pitch p, we model a local distribution of
instance neighborhood p(x|hi,p) and represent the entire
data distribution p(x) as a mixture of these distributions:∑

hi

∑
p p(x|hi,p)p(p|hi)p(hi).

We follow the training procedure of Casanova et al. [7].
For input xi, let Ai be the L2-based k nearest neighbors of
xi over the feature space defined by fφ. As shown in Fig.
1, we sample neighborhood data point xj from the uniform
distribution U(Ai). Then xj is used as a real sample together
with a generated sample xg to train the discriminator D, and
its corresponding pitch p(xj) is fed into both the generator
G and discriminator D for conditioning. Formally, we jointly
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Fig. 1. Overview of GANStrument. Left side shows training and inference pipeline of generative model. Right side depicts
adversarial training scheme of feature extractor.

optimize G and D using the following min-max game:

min
G

max
D

Exi∼p(x),xj∼U(Ai)[logD(xj ,p(xj),hi)] +

Exi∼p(x),z∼p(z)[log(1−D(G(z,p(xj),hi),p(xj),hi))]. (1)

2.2. Pitch-invariant feature extractor
The simplest way to obtain feature extractor fφ is to train a
classifier using labeled data. In our case, for example, we can
train an instrument identity classifier on the NSynth dataset
[1]. However, features extracted by this classifier contain not
only timbre but also pitch information, resulting in a decrease
of pitch accuracy, as shown in Sec. 3.4. This is because the
generator and discriminator confuse the specified pitch p with
remaining pitch information in h, and the training process
starts oscillating.

To solve this problem, we propose a pitch-invariant fea-
ture extractor based on an adversarial training scheme that en-
ables disentanglement of timbre and pitch in the latent space.
Our training scheme is inspired by previous work such as do-
main adaptation [8], image manipulation [9], and music do-
main transfer [10], in which adversarial training was intro-
duced to the bottleneck features. Let Ci(h) and Cp(h) be
shallow MLPs that predict instrument identity i(x) and pitch
p(x), respectively, given a feature h = fφ(x). As shown on
the right side of Fig. 1, the following objectives are alternately
optimized to obtain fφ:

min
fφ,Ci

CE(i(x), Ci(fφ(x))) + λadvKL(
1P
|P |
||Cp(fφ(x))), (2)

min
Cp

CE(p(x), Cp(fφ(x))), (3)

where |P | is the number of pitches, 1P ∈ R|P | is the all-one
vector, and CE and KL represent cross entropy and Kullback-
Leibler divergence, respectively. The first term of Eq. (2) up-
dates fφ and Ci so that instrument identities can be correctly
classified, while the second term makes it impossible to clas-
sify pitch given h. Eq. (3) updates Cp to maximize the accu-
racy of pitch classification given h. This adversarial training
eventually produces instance feature h, which contains little
pitch information. In fact, we re-trained pitch classifier Cp

with the frozen fφ using Eq. (3), and the accuracy of pitch
classification dropped from 17.4% to 2.6% with our adversar-
ial training scheme while that of instrument identity classifi-

cation remained unchanged at 91.2%, meaning that feature h
preserves timbre information.

2.3. Audio inversion

In the field of speech synthesis, learning-based vocoders have
achieved high-quality audio synthesis [11, 12, 13]. However,
several studies [14, 15, 16] suggested the difficulty of making
neural vocoders generalized to a variety of timbre and pitch,
which GANStrument is aimed at generating. On the other
hand, MelNet [17] revealed that optimization-based audio in-
version can synthesize a variety of audio including music with
decent quality by using high-resolution mel-spectrograms
(e.g., 256 bins).

Therefore, we use optimization-based audio inversion
with high-resolution mel-spectrograms (512 bins). Mel-
spectrogram inversion typically consists of a mel-to-linear
frequency-scale conversion and phase restoration using the
Griffin-Lim algorithm [18]. The frequency-scale conversion
could be a bottleneck here because a non-negative least-
squares problem minxlin

||Fmelxlin − xmel||2 s.t. xlin ≥ 0
must be solved with the computationally demanding L-
BFGS-B algorithm [19]. In place of L-BFGS-B, torchaudio
[20] introduces the first-order gradient method with negative
value clipping for faster iteration. However, it requires a
sufficient number of iterations due to random initialization.

We propose a simple yet effective initialization scheme.
First, we solve an unconstrained least-squares problem
minxlin

||Fmelxlin − xmel||2 using the divide-and-conquer
SVD because the mel filter bank Fmel is not well-conditioned.
Next, the negative values of the solution are clipped, and the
clipped solution is set as the initial value for the iterative
method of the first-order gradient method. This initialization
scheme reduces the number of iterations by a factor of 10.

3. EVALUATION
3.1. Experimental setup

We trained GANStrument on the NSynth dataset [1], a large-
scale instrument sound dataset that includes rich annotations
such as instrument categories, identities, and pitches. We ex-
tracted 88 pitches (MIDI notes 21–108) and used their first 1-s
segments with amplitude normalization and exponential fade-
out preprocessing. For evaluation, we also used single notes
of Good-sounds [21], with the silence intervals trimmed, and
used the same preprocessing as the NSynth dataset.



Table 1. Generation quality

conditioning Nsynth (val set) Good-sounds

FID↓ Pitch↑ FID↓ Pitch↑
pitch 490.1 0.831 1837.0 0.900

pitch + instrument 469.6 0.828 921.6 0.937

pitch + instance (ours) 212.3 0.870 507.3 0.946

To compute mel-spectrograms, we used an STFT with a
Hann window, a 1024 window size, a 64 hop size, and a 2024
fft size. This was followed by mel-scale conversion with 512
filter banks, resulting in 512× 256 mel-spectrograms.

We utilized the StyleGAN2 [22] architecture, a state-of-
the-art image synthesis model, for the backbone and used a
projection discriminator [23]. For feature extractor fφ, we
used an architecture that removes the final layer of the dis-
criminator. We jointly trained the generator and discriminator
using the ADAM optimizer with a learning rate of 2.5×10−3,
(β1, β2) = (0.0, 0.99), and ε = 10−8 for 300k steps with a
batch size of 16. For training stability, we exploited the train-
ing techniques described by Karras et al. [22] such as R1 reg-
ularization and path length regularization. We used k = 50
for the neighborhood search.

3.2. Generation quality
First, we evaluated the fidelity and diversity as well as pitch
accuracy of the generated samples. To validate the proposed
approach, we trained two class-conditional GANs as strong
baselines: the first model G1(z,p) was conditioned on pitch
p and the other G2(z,p, c) was conditioned on both pitch p
and instrument category c (using 11 NSynth instrument cat-
egories). For fair comparison, we used the same architecture
and training parameters for these baselines as in Sec 3.1.

To evaluate the Fréchet inception distance (FID) and pitch
accuracy, we trained both the instrument category classifier
(as an FID feature extractor) and the pitch classifier on the
NSynth dataset. The architecture of these classifiers was a
slightly modified version of the discriminator. They respec-
tively achieved accuracies of 74.3% and 93.2% (against the
test set). For evaluation on Good-sounds, we used the same
distributions of pitch and category as in the dataset for fair
comparison.

Table 1 shows that GANStrument was superior to the
baselines on both datasets, suggesting that GANStrument has
not only the ability to model the distribution of training data
but also the ability of generalization.

3.3. Editability
Next, we evaluated the editability of the input sounds. To
evaluate the faithfulness of reconstruction, we measured the
mean squared error (MSE) and pitch accuracy of the synthe-
sized samples. MSE was computed on the feature space de-
fined by the FID feature extractor. To evaluate the ability of
exploration in the latent space, we randomly chose two in-
puts from the dataset and interpolated the corresponding la-

Fig. 2. Examples of interpolation in the latent space.1

tent variables using a ratio sampled from uniform distribu-
tion U(0, 1) to generate interpolated samples. We computed
the FID between the input and interpolated samples. We ran-
domly chose a conditioning pitch from the 88 pitches.

The baseline models need to invert the inputs into the la-
tent space for editing. Typical approaches to GAN inversion
can be categorized into learning-based, optimization-based,
and a hybrid of the two [24]. In our experiments, we used
learning-based and hybrid approaches, which we found work
well. We trained encoders E1(x) and E2(x) for the base-
lines with objectives minE1

||x − G1(E1(x),p(x))||22 +
λz||E1(x)||22 and minE2

||x − G2(E2(x),p(x), c(x))||22 +
λz||E2(x)||22, respectively. The second term is regularization
for z to follow a standard normal distribution, which we found
to be essential for the following optimization. In the hybrid
approach, we initialized latent variables with z = E{1,2}(x)
and minimized L2 loss with respect to z.

The middle portion of Table 2 shows that the baselines
tended to fail in reconstructing the inputs and to sacrifice pitch
accuracy, especially for Good-sounds, because they prioritize
minimizing the reconstruction error, whereas GANStrument
successfully reconstructed the inputs for both seen and unseen
datasets. The right side of Table 2 shows that the interpolated
samples of the baselines produced a significant decrease in
pitch accuracy, which suggests that the interpolated latents
could deviate from the data manifold. Our model, in contrast,
had better FID and pitch accuracy, demonstrating that it can
generate high fidelity samples with accurate pitch by explor-
ing the latent space.

Fig. 2 shows qualitative examples of the interpolation
in the latent space. Their inputs were keyboard and brass
sounds of the NSynth dataset and noise vectors z were fixed.
The baselines struggled with inverting the inputs and com-
pletely failed to mix two sounds. In contrast, GANStrument
smoothly interpolated two timbres with accurate pitch.

3.4. Ablation study
Next, we conducted an ablation study to evaluate the effec-
tiveness of the proposed pitch-invariant feature extractor. For
comparison, we trained an instrument identity classifier as a
feature extractor fφ using only the first term of Eq. (2). Table
3 shows that our approach significantly improved pitch accu-
racy. Fig. 3 shows mel-spectrograms of 88 pitches gener-
ated with the input of a saxophone sound of the Good-sounds
dataset and a fixed noise z. The feature extractor without ad-



Table 2. Editability

conditioning inversion
reconstruction interpolation

Nsynth (val set) Good-sounds Nsynth (val set) Good-sounds

MSE↓ Pitch↑ MSE↓ Pitch↑ FID↓ Pitch↑ FID↓ Pitch↑

pitch enc. 6.53 0.669 8.23 0.384 1451.7 0.296 2298.5 0.251
enc. + opt. 6.34 0.629 8.44 0.126 1183.0 0.314 2292.4 0.214

pitch + instrument enc. 4.32 0.793 5.09 0.655 709.8 0.594 679.3 0.585
enc. + opt. 3.49 0.778 3.12 0.167 601.2 0.534 610.0 0.442

pitch + instance (ours) - 1.79 0.904 3.28 0.944 252.2 0.883 477.4 0.883

Table 3. Ablation study: feature extractor

feature extractor Nsynth (train set) Nsynth (val set)

FID↓ Pitch↑ FID↓ Pitch↑
w/o adv. training 95.3 0.731 191.4 0.757
w/ adv. training 90.4 0.834 212.3 0.870

Fig. 3. Ablation study: difference between feature extractor
without and with adversarial training.1

versarial training produced inaccurate pitches, especially in
higher tones as shown in the green box, as well as timbre in-
consistency, as shown in the blue box. The pitch-invariant
feature extractor, in contrast, produced stable pitches with
timbre consistency.

3.5. Non-instrument sound inputs
Fig. 4 shows qualitative results with the input of non-
instrument sounds such as a rooster and dropping water.
The synthesized sounds reflected the input timbres and pro-
duced stable pitch like musical instruments. These results
demonstrate that GANStrument has generalization ability to
non-instrument sounds to some extent and is able to exploit
a variety of sound materials to design the timbre as the tra-
ditional samplers do. Note that the additional examples are
available online1.

3.6. Timing
Finally, we measured the generation timing on a middle-range
CPU (Intel Core i7-7800X, 3.50 GHz). The total time was
1.62 s, where the inference of the feature extractor fφ and
generator G took 0.31 and 0.35 s, respectively, and mel-to-
linear scale conversion 0.60 s, Griffin-Lim algorithm 0.36 s.
These results show that the improved mel-to-linear scale con-
version described in Sec. 2.3 plays an important role in inter-
active generation.

Fig. 4. Examples of non-instrument sound inputs.1

4. RELATED WORK
NSynth [1] uses a WaveNet [25]-based autoencoder to di-
rectly synthesize the waveforms of instrument sounds. While
it is capable of inference with a trained encoder, autoregres-
sive sampling makes generation slow and prone to artifacts.
GANSynth [2] improves generation speed and quality by us-
ing an image synthesis model and a spectrogram with phase
information. However, it does not accept inputs, making it
difficult to explore desired timbre in a complex latent space.
Luo et al. [3] proposed disentangling timbre and pitch us-
ing a Gaussian mixture VAE, but the simple architecture and
autoencoder-based training make audio quality insufficient.

DDSP [5] and its subsequent work [6] achieve fast and in-
terpretable generation by incorporating additive synthesis and
wavetable synthesis into autoencoders. However, their inputs
should have clear pitch and the generated timbre is basically
limited to a combination of integral multiples of the funda-
mental frequency [5]. Leveraging the domain knowledge like
these studies is complementary to our work and left for future
work to further improve our model.

5. CONCLUSION
Our novel neural synthesizer, GANStrument, generates
pitched instrument sounds reflecting one-shot input timbre
within an interactive time. It incorporates two key features:
1) instance conditioning, resulting in better generation qual-
ity and generalization ability to various inputs and 2) pitch-
invariant feature extraction based on adversarial training,
resulting in significantly improved pitch accuracy and timbre
consistency. Experimental results demonstrated the effective-
ness of this approach. We believe that GANStrument will
enable users to generate novel instrument sounds as well as
freely explore the desired timbre by utilizing a variety of
sound materials.
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