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ABSTRACT

Direct Low Earth Orbit satellite-to-handheld links are expected to be part of a new era in satellite communications. Space-Division Mul-

tiple Access precoding is a technique that reduces interference among satellite beams, therefore increasing spectral efficiency by allowing

cooperating satellites to reuse frequency. Over the past decades, optimal precoding solutions with perfect channel state information have

been proposed for several scenarios, whereas robust precoding with only imperfect channel state information has been mostly studied for

simplified models. In particular, for Low Earth Orbit satellite applications such simplified models might not be accurate. In this paper, we

use the function approximation capabilities of the Soft Actor-Critic deep Reinforcement Learning algorithm to learn robust precoding with

no knowledge of the system imperfections.

Index Terms— Multi-user beamforming, 3D networks, Low Earth Orbit (LEO), Machine Learning (ML), deep Reinforcement Learning

(RL)

1. INTRODUCTION

Integrating Non Terrestrial Networks (NTN), e.g. satellites and Unmanned Aerial Vehicles (UAVs), into current terrestrial infrastructure is

one of the important pillars in the development of the sixth-generation standard of mobile communication networks [1]. So-called holistic

3D networks will enable ubiquitous global coverage, provide capacity for temporally and locally varying traffic demands and enhance the

robustness of terrestrial network infrastructure [2, 3]. However, a host of challenges is introduced due to the high dynamism of NTN devices.

Low Earth Orbit (LEO) satellites have especially fast-changing Line-of-Sight (LoS) channels, which are mainly characterized by the relative

positions between satellites and users. To increase spectral efficiency through frequency reuse, precoding based Space-Division Multiple

Access (SDMA) is used in satellite communications [4]. However, the performance suffers due to imperfect positional information [5, 6].

Finding a precoding algorithm that maximizes performance metrics such as the sum rate for multiple geometric constellations while

also showing robustness against imperfect positioning and channel estimates can prove challenging. In light of this, Machine Learning

(ML) methods present themselves as an attractive choice. ML can be used to approximate a viable algorithm where the optimum is either

infeasible to determine or wholly unavailable. Deep Learning (DL) in particular has demonstrated tremendous potential on such problems

in the past decade, [7, 8]. Applying DL to precoding has recently started to gather more attention, primarily in terrestrial communications,

e.g., [9] use supervised learning to approximate a lower complexity Minimum Mean Squared Error (MMSE) precoder, [10] show the ability

of Reinforcement Learning (RL) precoders to optimally learn on toy scenarios without interference and [11] use an autoencoder structure to

learn robust precoding and decoding under imperfect channel knowledge. In the LEO satellite context, [6] have extended their work on robust

precoding pertaining imperfect positional knowledge for a single satellite scenario by a supervised low-complexity approximation. In this

paper, we will use model-free deep RL. In RL, an agent probes the environment (i.e., selecting a precoding matrix and observing the result),

thereby generating data to learn from, to gain understanding of the system dynamics and adjust their behavior to maximize an objective. By

using this approach, no assumptions about the error modeling need to be made; it is instead discovered and inferred from the data. However,

data-driven learning requires data samples containing high information content to learn efficiently. For this reason, we use the Soft Actor-

Critic (SAC) learning algorithm [12]. SAC encourages exploring new data samples where the algorithm’s understanding is low, generating the

necessary high quality data faster than random exploration.

In the next section, we introduce the system model of cooperative multibeam satellite communication, the applied Channel State Infor-

mation at Transmitter (CSIT) error models, typical precoding approaches, and the sum rate maximization problem. Following that, we explain

the SAC method as it is used in this paper. We then apply SAC to maximize the sum rate in the presence of CSIT error, and discuss & contrast

the performance against common MMSE and Orthogonal Multiple Access (OMA) precoding. Finally, we briefly discuss the scalability of the

model case presented in this paper. For brevity, we assume prior knowledge of deep Neural Networks (NNs) [13].

This work was partly funded by the German Ministry of Education and Research (BMBF) under grant 16KIS1028 (MOMENTUM) and 16KISK016
(Open6GHub) and the European Space Agency (ESA) under contract number 4000139559/22/UK/AL (AIComS). Parts of this work was submitted to IEEE
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Notations: Lower and upper boldface letters denote vectors x and matrices X with IN being an identity matrix of size N ×N . Transpose

and Hermitian operators are indicated by {·}T and {·}H , whereas ◦ is the Hadamard product. | · | and ‖ · ‖ signify the absolute value and

Euclidean norm, respectively.

2. SATELLITE COMMUNICATION SETUP & NOTATIONS

This section introduces the applied LoS channel model with errors regarding the measurement of user and satellite positions. Further, we

explain two common precoding techniques for satellite communications.

2.1. System Model

In this paper, we consider a multi-user downlink scenario with M LEO satellites, each equipped with a Uniform Linear Array (ULA) of N
antennas, serving K handheld users with one receive antenna each and low receive antenna gain GUsr. It is assumed that all satellites are

provided with the data symbols of all users and perform joint precoding, i.e., all satellites perform the precoding together. The data symbol

sk of user k is weighted by a precoding vector wk ∈ C
MN×1 and transmitted over the LoS channel hk ∈ C

1×MN with Additive White

Gaussian Noise (AWGN) nk ∼ CN (0, σ2
n). Hence, the receive signal yk follows as

yk = hkwksk + hk

∑K

l 6=k
wlsl + nk. (1)

The LoS channel vector hk,m ∈ C
1×N from satellite m to user k with hk = [hk,1 . . .hk,M ] is given by

hk,m(νk,m) =
λ
√
GUsrGSat

4πdk,m
e
−jϕk,mvk,m(cos(νk,m)), (2)

where GSat denotes the satellite antenna gain, λ is the wavelength and dk,m is the distance between the m-th satellite and the k-th user. The

overall phase shift from satellite m to user k is given by ϕk,m ∈ [0, 2π]. The relative phase shifts between the N antennas of a satellite m to

user k are described by the steering vector vk,m(cos(νk,m)) ∈ C
1×N , where νk,m is the Angle of Departure (AoD) from satellite m to user

k. The n-th entry of the steering vector vk,m(cos(νk,m)) is given as

vnk,m(cos(νk,m)) = e
−jπ

dn
λ

(N+1−2n) cos(νk,m), (3)

where dn is the inter-antenna-distance between the N antennas per satellite. Given that the inter-antenna-distance dn is fixed and known, the

phase differences in (3) between antenna n and n′ are only determined by the k-th user position, reflected in the space angle cos(νk,m). In

practice, a precise estimation of the user’s position may not be feasible due to the high velocities of LEO satellites. We assume that user k’s

position can be well estimated within a certain region. Therefore, we model the estimation error on the space angle cos(νk,m) as a uniformly

distributed additive error εk,m ∼ U(−∆ε,+∆ε) [14]. Since the error εk,m is added on the cosine of the AoDs and given the definition of the

steering vector (3), the erroneous channel vector h̃
(1)
k,m(νk,m) can be expressed as an overall multiplicative error vk,m(εk,m) ∈ C

1×N on the

true channel hk,m(νk,m)

h̃
(1)
k,m(νk,m, εk,m) = hk,m(νk,m) ◦ vk,m

(

εk,m
)

(4)

with the n-th entry of the error vector vk,m(εk,m)

vnk,m(εk,m) = e
−jπ

dn
λ

(N+1−2n)εk,m . (5)

Joint precoding with multiple satellites requires tight inter-satellite synchronization. If such synchronization is imperfect, the signals

from different satellites arrive with different phases. To model such synchronization mismatch, we assume an error ζk,m ∼ N (0, σ2
ζ) on the

overall phase shift ϕk,m. The resulting erroneous channel estimation with imperfect synchronization and position knowledge is given as

h̃
(2)
k,m(νk,m, εk,m, ζk,m) = e

−jζk,m · h̃(1)
k,m(νk,m, εk,m). (6)

In this paper, we analyze the influence of both error models, (4) and (6), on the precoding performance. We evaluate the performance of our

different precoding techniques by comparing their corresponding sum rates

R =
K
∑

k=1

log

(

1 +
|hkwk|2

σ2
n +

∑K

l 6=k
|hkwl|2

)

(7)

Our goal is to maximize the sum rate (7) for various satellite-to-user constellations while enhancing robustness against imperfect user position

knowledge at the satellites (4) as well as imperfect satellite position knowledge (6). We propose to learn a robust precoding algorithm using

the SAC method, to be introduced in Section 3. Further, we analyze two common approaches explained in the subsequent section.

2.2. Baseline Precoding Techniques

This subsection presents two common precoding approaches for satellite downlink communications: the conventional MMSE precoder for

SDMA, and an OMA approach assuming orthogonal time or frequency resources.
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Fig. 1. SAC Precoder process flow. Top row describes inference, bottom row describes learning. Blue arrows relate to learning, red arrows

show NN parameter updates.

2.2.1. MMSE

For optimal SDMA precoding, the precoding vector wk steers a beam with maximal power into the direction of the corresponding user k
while minimizing Inter-User Interference (IUI). The MMSE precoder has been proven to be a reliable precoder in this manner and is widely

used [15, 16]. For MMSE, the precoding matrix W
MMSE =

[

w
MMSE
1 . . .wMMSE

K

]

for a given channel estimate H̃ = [h̃1 . . . h̃K ]T is calculated

as follows

W
MMSE =

√

P

tr{W′H
W′} ·W′

W
′ =

[

H̃
H
H̃+ σ2

n · K
P

· IMN

]−1

H̃
H

, (8)

where P denotes the total amount of transmit power. In this paper, we further constrain the maximum transmit power per satellite Pm to

be equally distributed among all M satellites, such that Pm ≤ P/M applies. Note that the MMSE precoding approach does not necessarily

maximize the sum rate R (7).

2.2.2. OMA

In contrast to SDMA, OMA uses orthogonal time or frequency resources. In this case there is no IUI between the user channels. Therefore, the

optimal precoder is a Maximum Ratio Transmission (MRT) precoder that solely maximizes the transmit power steered into the direction of a

given user k

w
MRT
k =

√
P · h̃

H
k

‖h̃k‖
. (9)

Here the total transmit power P is used for user k. Due to the absence of IUI, the sum rate for OMA calculates as

ROMA =
1

K

K
∑

k=1

log

(

1 +
|hkwk|2

σ2
n

)

. (10)

To guarantee a fair comparison between OMA and the different SDMA approaches, the overall rate is divided by the number of users K, taking

into account that in SDMA time and frequency resources are shared between all users. The MMSE and the OMA approach will serve as baselines

for our proposed learning algorithm.

In the next section, we will discuss how to iteratively learn a robust precoding algorithm that approximately optimizes the sum rate (7)

based on the current channel state estimate.

3. LEARNING TO PRECODE USING SOFT ACTOR-CRITIC

In deep RL, an agent learns to approximately maximize a performance metric by interacting with a system and adjusting its behavior according

to the system feedback. Here, the metric is the sum rate R (7) and the behavior corresponds to the precoding algorithm. In this section, we

introduce the Soft Actor-Critic (SAC) [12] RL method, which is characterized by rewarding exploration where uncertainty is high, thereby

generating high quality data samples.

Our SAC implementation uses five components, shown in Fig. 1: 1) a Pre-Processing step, 2) two Critic Neural Networks (CrNNs) q̂1 and

q̂2, 3) an Actor Neural Network (AcNN) µ, 4) an Experience Buffer, and 5) a Learning Module. We denote the NN weights as θq̂1 ,θq̂2 , θµ for

q̂1, q̂2,µ, respectively. The AcNN will form the precoding matrix W. In SAC, it produces stochastic output using the reparametrization-trick:

For the i-th entry ai of an output vector a, the AcNN produces two outputs, one of which is considered a mean µi,µ̄ and the other a scale µi,σ .

The outputs ai ∼ N (µi,µ̄, µi,σ) are then sampled from a Normal distribution.

A discrete inference and learning step t looks as follows: First, the Pre-Processing step prepares the amplitude and phase components of

the complex valued erroneous CSIT H̃t ∈ C
K×MN in a flat state vector zt ∈ R

1×2MNK as input for the NN. Based on this input vector zt
and its current parameters θµ,t, the AcNN µ will output an action vector µ

θµ,t
(zt) = at ∈ R

1×2MNK . This real-valued vector a is then

reshaped into a complex-valued precoding matrix Wt ∈ C
MN×K with entries

wn
t,k,m = at,k+m+n + jat,N+k+m+n,



Table 1. Selected Parameters

Noise Power σ2
n 6e-13W Transmit Power P 100W

Sat. Altitude 600 km Ant. per Sat. N 2

Sat. Nr. M 2 Gain per Sat. Ant GSat 14 dBi

Sat. Distance 10 km Gain per User GUsr 0dBi

User Nr. K 3 Inter-Ant.-Distance dn 3λ/2

Wavelength λ 15 cm Hidden Layers × Nodes 4× 512

Learning Steps t 3e4 Critic Learning Rate 1e-5

Exp Buffer Size 1e4 Actor Learning Rate 1e-6

Entropy Target α 1.0 Data Batch Size B 512

and is normalized to the available transmit power per satellite P/M , same as the MMSE precoder. Subsequently, precoding is performed, the

resulting sum rate Rt (7) is calculated. The data sample of state zt, action at and result Rt is saved in the Experience Buffer. This concludes

the inference part.

Next, to improve the quality of the AcNN’s outputs, its weights θµ,t must be tuned. The Actor-Critic method operates as follows: We

wish to update the weights to maximize the mapping of (z,a) → R, outputting precoding that maximizes the sum rate. This mapping

is, however, unknown to the learning method. Given the collected data samples from the Experience Buffer, the CrNNs can approximate a

mapping q̂(z,a) = R̂. If the true mapping is approximated sufficiently well, the AcNN’s weights θµ can be updated to maximize the known

mappings q̂. Weight updates are performed once per training iteration t on both CrNNs q̂1, q̂2 and AcNN µ. The CrNN q̂1, q̂2 are updated in a

supervised learning manner, minimizing the squared distance

Lq̂ = (q̂θq̂,t
(zt,at)−Rt)

2 = (R̂t −Rt)
2

between the approximation R̂t given current weights θq̂,t and the data sample target Rt. We then construct an AcNN loss

Lµ,1 = −min(q̂1,θq̂1,t
(zt,µθµ,t

(zt)), q̂2,θq̂2,t
(zt,µθµ,t

(zt)))

that minimizes the negative approximate expected results R̂t, thereby maximizing the approximate expected results. Selecting conservatively

from multiple, independently initialized mappings q̂ has been shown to stabilize the learning process.

This loss, however, gives no incentive for the AcNN to maintain its stochastic output’s scales µi,σ , i.e., incentive to explore new data

samples where uncertain. During the learning process, insufficient exploration might lead to an incomplete data set that lacks information

required to discover solutions near the global optimum. To prevent the AcNN from contracting its scales µi,σ too rapidly, the SAC method

additionally adds an entropy loss

Lµ,2 =
1

2MNK

2MNK
∑

i=1

exp(α) log(π(µi,θµ,t(zt),θµ,t)),

where π(µi,θµ,t(zt),θµ,t) is the probability of µi,θµ,t(zt) given the current weights θµ,t of the AcNN µ and α is a weighting factor. In the

mean sense, this loss is directly minimized by increasing the AcNN output variance and therefore represents the necessary counterweight to the

first loss Lµ,1. The scaling factor α is updated iteratively to keep the entropy roughly constant over the duration of training, i.e., it is adjusted

whenever the entropy falls above or below a heuristic target value. Summarily, the AcNN µ updates its weights θµ to minimize a composite

loss Lµ = Lµ,1 + Lµ,2. Both AcNN and CrNN parameter updates are performed using Stochastic Gradient Descent (SGD)-like optimization

on batches of B data samples drawn from the Experience Buffer with uniform probability.

In the following section, we evaluate specific implementation details and the performance of the learned precoder for given scenarios.

4. EVALUATION

In this section, we cover specific implementation details and compare the performance of SAC-learned precoders to the MMSE and OMA

baselines.

4.1. Implementation Details

The code is implemented in Python using the TensorFlow library and is available online at [17]. Table 1 lists the key communication and

learning parameters. For each iteration t, user positions are updated around a mean inter-user-distance D̄Usr = 1 km following a uniform

distribution of ± 30m. This is done to prevent the learning process from honing in on a fixed user position regardless of the information it is

fed, but it also highlights the method’s ability to learn a single precoding algorithm that serves different satellite and user constellations.

We train three SAC precoders named SAC1, SAC2, SAC3. SAC1 is trained with perfect CSIT, SAC2 is trained on error model 1 (4) with

a bound of ∆ε = 0.1, and SAC3 is trained on error model 2 (6) with a bound of ∆ε = 0.1 and a scale of σζ = 0.01. All precoders are

evaluated in terms of the achieved sum rate R. In cases with imperfect CSIT, the sum rate R̄ is averaged over 10 000 Monte Carlo iterations.
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Fig. 2. The sum rate (7) for different user distances DUsr with perfect CSIT clearly highlights the performance gains of the SAC precoder over

MMSE, particularly when channels are highly correlated (valleys) or nearly orthogonal (peaks). The SAC precoder shows glitches, e.g., around

980m; it achieves its performance despite not having reached full convergence during training.
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Fig. 3. Mean sum rate performance of different precoding approaches in the presence of an error on CSIT according to the first error model

(4). Error bars represent the standard deviation. Note that user distances are also varied within each evaluation, hence the variance even at

zero error.
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Fig. 4. Mean sum rate performance on the second error model, (6). We fixate the user position error bound to ∆ε = 0.1 and sweep over the

satellite position error scale σζ . Again, the learned algorithm achieves higher sum rates than the MMSE precoder, as well as slightly increased

robustness at higher errors.

4.2. Results

We first investigate the details of the precoding algorithm SAC1 for perfect CSIT in Fig. 2. As the user distances DUsr change, the user

correlation in user channels alternates periodically, significantly impacting the achievable performance. The learned precoder shows gains

over the MMSE precoder especially in the extreme areas, with either highly correlated or nearly orthogonal channels. When the channels

are highly correlated, the learned precoder achieves its gain by focusing as much power as possible on a single user, thereby decreasing

interference, but sacrificing fairness. Crucially, the learned precoder outperforms OMA almost everywhere, demonstrating the increased

spectral efficiency by frequency reuse. In further investigations, the learned algorithms generalize well to user distances up to at least

± 300m for the given scenario. We attribute this to the learning algorithm capturing the locally periodic nature of the optimization objective

during training.

Fig. 3 compares SAC1 and SAC2 to MMSE and OMA precoding with unreliable user position measurements (4) for increasing error bound

∆ε. As expected, since MMSE is not sum rate optimal, SAC1 achieves the best sum rate performance with perfect CSIT, with SAC2 slightly

behind and both outperforming the baselines MMSE and OMA. With increasingly unreliable user position estimates, the performance of all

four precoders degrades. However, SAC2, which already encountered unreliable information during training, shows resilience even at very

high values of ∆ε.

We then confirm in Fig. 4 that the same learning approach also works for imperfections of satellite positions (6), demonstrating the

adaptability of model-free data-driven optimization.



5. CONCLUSIONS

We have applied the SAC RL method to the problem of sum rate optimal precoding for cooperative multibeam satellite communications in the

presence of erroneous channel knowledge. Our results show that we are able to learn both effective and robust precoding algorithms with no

assumptions on the underlying error model. We therefore expect this approach to scale well on real life satellites, particularly with sights on

dedicated ML hardware being deployed on future satellites [18].
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