arXiv:2109.11165v4 [eess. AS] 22 Dec 2023

A LIGHTWEIGHT DYNAMIC FILTER FOR KEYWORD SPOTTING

Donghyeon Kim', Kyungdeuk ko', Jeonggi Kwak', David K. Han?, Hanseok Ko*

'Korea University, South Korea
*Drexel university, USA

ABSTRACT

Keyword Spotting (KWS) from speech signals is widely applied to
perform fully hands-free speech recognition. The KWS network is
designed as a small-footprint model so it can continuously be active.
Recent efforts have explored dynamic filter-based models in deep
learning frameworks to enhance the system’s robustness or accuracy.
However, as a dynamic filter framework requires high computational
costs, the implementation is limited to the computational condition
of the device. In this paper, we propose a lightweight dynamic filter
to improve the performance of KWS. Our proposed model divides
the dynamic filter into two branches to reduce computational com-
plexity: pixel level and instance level. The proposed lightweight
dynamic filter is applied to the front end of KWS to enhance the sep-
arability of the input data. The experimental results show that our
model is robustly working on unseen noise and small training data
environments by using a small computational resource.

Index Terms: keyword spotting, dynamic filter, dynamic weight,
computational cost

1. INTRODUCTION

Recently, deep learning based speech applications have been applied
in real world applications [1} 2} 3} 4]]. For smart devices on standby
for human user’s commands, Keyword Spotting (KWS) is an es-
sential capability. In addition, KWS system can be leveraged for
Over-The-Top (OTT) media service or smart TV to enhance acces-
sibility between user and computer. As these systems listen con-
tinuously to the audio stream in the environment, their KWS pro-
cess should cost minimally to conserve battery power. For this rea-
son, model parameters and subsequent computational cost are im-
portant elements in evaluating the KWS system. This Conventional
KWS has been based on Hidden Markov Models (HMMs) by us-
ing a large vocabulary speech recognizer and a background model
[55 16]. With the advent of deep learning framework, Multi-Layer
Perceptron (MLP) and Convolutional Neural Network (CNN) have
been shown to outperform the conventional methods [7, 8} 9. As
CNN requires high computations in general to extract spectral and
temporal features, some proposed models focused to reduce compu-
tational cost. Depthwise Separable Convolution (DSConv) extracts
channel-wise features separately and later combines channel infor-
mation by using 1D convolution [10]. As an alternative to the low
computational model, temporal convolution-based networks [[11,12]
have been proposed to extract spectral features by performing con-
volution on the temporal axis. Neural Architecture Search (NAS)

This work was supported by Korea Environment Industry & Technol-
ogy Institute(KEITI) through Exotic Invasive Species Management Program,
funded by Korea Ministry of Environment(MOE) (2021002280004)

David Han’s work on this paper is partly sponsored by the Office of
Naval Research (.Grant Number: N00014-21-1-2790.).

methods [13} [14] have been also proposed to find the best network
structure with a reduced computational requirement for the KWS
model. Although these networks would reduce memory footprints
and computational operations, their performances have been shown
limited, particularly with unknown speakers or unseen noise.

An alternative to improve performance is integrating a filter on
the front end of the process [15 [16]. In the conventional dynamic
filter process, dynamic weights are generated by each input patch.
In this case, computations would be required for all the input pixels.
Such an extra process of filtering, however, adds to the computa-
tional cost, which defeats the purpose of reducing computations. To
balance out the requirement between high performance with minimal
computation, we propose a Lightweight Dynamic (LDy) convolution
for the front-end filtering. In our proposed network, two branches
of dynamic filters are implemented at the front end of the network:
pixel-level and instance-level. A pixel-level dynamic filter performs
pixel attention for Time-Frequency (T-F) features while an instance-
level dynamic filter produces a global representative weight vector
from the temporal pooling of the acoustic features. These two ways
of dynamic weights are merged to conduct CNN process. We also
leverage dynamic weights to conduct Instance normalization to the
output of dynamic convolution. This is because conventional nor-
malization methods [17, 118 [19], which use static weights, have lim-
itations in addressing the noise robustness problem. Our proposed
model is applied to the convolution process in a computationally ef-
ficient manner to deliver dynamic filtering robust to noisy environ-
ments. The KWS experiments are carried out on Speech command
data [20] v1 and v2. Additionally, we utilize three different noise
data [21} 122} 23], to set up the unseen noise environments. The ex-
perimental results show that the proposed lightweight dynamic fil-
ter improves KWS performance with robustness over recently devel-
oped methods. Especially our lightweight dynamic convolution only
utilizes 220K Flops., and 2K parameters for its implementation.

2. RELATED WORKS

Dynamic Filter Network (DFN) is an adaptive deep neural network
architecture [[15] that generates filter parameters by neural networks.
DEN consists of a filter generator and dynamic filter layers. The
filter generator produces weights of the neural network, and the
process of filtering occurs in the dynamic filter layer with the gen-
erated weights. This method conditionally adjusts weight vectors
for given patch-level features. This learning method is simpler and
works more efficiently over a self-attention network [24]. Kim et
al. [16] proposed a convolution-based dynamic filter network to
enhance salient features from the unseen noisy audio stream, and
their experimental results showed that their approach outperformed
conventional feature enhancement methods. Fujita ef al. [25] also
utilized a dynamic filter-based method for a lightweight ASR model.
They confirmed that applying dynamic convolution to the decoder

/ Filter generator \

Dynamic filter layer

X' —pX)

Fig. 1: Pipeline of Lightweight Dynamic Convolution process: PDF
denotes Pixel Dynamic Filter; IDF denotes Instance-level Dynamic
Filter. N denotes total pixels in the T-F feature

part in the encoder-decoder model improves accuracy and reduces
computational load over transformer[26] based models. Although
dynamic filter-based approaches have shown progressive perfor-
mance improvements recently over other methods, they typically
require high computational cost in filter implementation since the
weights are produced by each patch basis. To alleviate this issue,
we borrow the idea of Decoupled Dynamic Filter (DDF) [27] from
computer vision. Instead of a single filter to take up channel-spatial
features directly, DDF divides the filtering into two parts: channel
and spatial. The channel-wise filter applies computationally efficient
1-D convolution while the spatial-wise side uses a simple global av-
erage pooling. These two filters are trained at separate branches of
the network and they are then combined into forming a dynamic
filter for input feature maps. By using simple computations, this
method yields a significant reduction in memory and floating-point
operations (FLOPs). In our adaptation of DDF, we split the dynamic
filter process into Pixel Dynamic Filter (PDF) and Instance-level
Dynamic Filter (IDF), and the process is described in Figl. The
PDF follows a spatial attention mechanism to capture pixel saliency
and the IDF determines the direction of the dynamic weight vector
adaptive to the input audio clip. The outputs of PDF and IDF are
utilized to conduct the dynamic filter process.

3. LIGHTWEIGHT DYNAMIC FILTER

3.1. Pixel Dynamic Filter

The goal of PDF is to obtain an attention-based Time-Frequency (T-
F) mask to measure a pixel level saliency. A single channel convolu-
tion is applied to T-F features (z € RIT*F)) and normalization with
sigmoid activation is subsequently applied for mapping the feature
scale from O to 1. The process of PDF is as follows:

wi = p(IN(Conv(zi,w))), (1)

where Conv(z;, w) denotes the convolution process with x; as the

i¢h, input data in mini-batch of the convolution and w represents the

trainable weight vector (w € RUSXX] where K denotes size of

convolution kernel). Then Instance Normalization (IN) with sigmoid

activation (p(+)) are performed in series to obtain pixel level weights
P [Tx F,1]

3.2. Instance-level Dynamic Filter

Conventional deep learning-based dynamic filters generate adaptive
weights for the filter by learning them through the training process

of a Convolutional Neural Network (CNN). While this approach has
shown to be flexible and adaptive in various domains of diverse
speaker characteristics or noise, it comes at the cost of high com-
putational loads.

As an efficient alternative to the convolution-based dynamic fil-
ter generation, we developed IDF which guides in capturing direc-
tional features of dynamic filter. IDF is aimed to produce an audio
representative weight vector, which is similar to speaker embedding
in speaker verification. To this end, the temporally averaged feature
(H € Ry that preserves the frequency trait gets fed to an MLP-
based model, and the output is used as vector direction of dynamic
weight. The process of IDF is as follows:

w? = maz(0,IN(H - w1+ b1)) - wa + ba,)

where w; and b; are learning parameters. Two layers of MLP with
IN and relu activation extract a weight vector (WH € RILEXK]). In
this way, the weight vector is generated uniquely per input audio sig-
nal, and the dynamic filters (w’? and w) are multiplied to perform
dynamic convolution.

3.3. Dynamic Convolution

The process of dynamic convolution is as follows:

WZD = wZP @WH, (3)

xP = IN(Conv(zi, w?)), @)

;c; = CEZD + xi,)
TxF,KxXK

where wP € R! I denotes dynamic weights for CNN com-
putation. From equation 3, weight vector (w) and scalar weight
of pixel (w!) perform element-wise product (®) to obtain the dy-
namic weights. Then, the convolution process using the dynamic
weights is performed on the input and the result is normalized as
in Equation 4. Through the skip connection, the normalized output
(@P e RIT*F1yjs added to the input z; to be fed to the KWS model
as shown in Equation 5. As such, the dynamic convolution-based
filter generation adapts to each input effectively by enhancing fea-
tures relevant to the KWS task. In conventional dynamic filters, a
patch-level weight vector gets generated by a filter generator. Thus,
the weight vector has different directions and magnitudes per patch.
Our method, however, uniquely generates a unit directional vector
for all the patches while the magnitude gets conditionally adjusted
depending on each input patch. By decomposing the weight vector
in terms of its direction and magnitude, the dimension of the weights
becomes reduced significantly. This would significantly reduce the
computational complexity of the dynamic filter.

3.4. Dynamic Instance Normalization

Normalization technique is an important part to achieve promising
KWS performance [19]. However, leveraging a conventional nor-
malization process, where statistic weights (scale and bias) are used,
might not efficiently handle blind environments. From the motiva-
tion of the previous study [28]], to address this, we leverage dynamic
weights to implement feature normalization for the output of dy-
namic convolution. We firstly normalize the output of dynamic con-
volution by zero mean unit variance (i and o) and two different
FC layers produce dynamic weights (o and 8 € R]) respectively
to adjust scale and bias. Here, an input of the linear layer is the out-
put of the first linear layer in IDF. The process of Dynamic Instance
Normalization (DIN) is as follows:

DIN(m,D) = a(m? - ,uz?)/azg + B, 6)

Table 1: Comparison of the parameter numbers, computation
time, and memory cost. Conv, DyConv, and LDyConv stand
for static filter-based convolution, Dynamic filter convolution, and
Lightweight Dynamic convolution respectively.

Filter Conv DyConv LDyConv
Parameter K’ K7 K%(F+1)

Time O(K®N) O(K*N) O(K?N)

Space - O(K?*N) O(N?+K)

where 1, p and o, p denote mean and standard variation of the zP.
Instead of IN, DIN is applied to equation (4).

3.5. Computational Complexity

Our proposed dynamic convolution is applied to the front end of the
KWS network for the dynamic feature extraction. A single-channel
audio input gets fed to dynamic convolution and a single-channel
output is employed as input for the KWS network. For this single-
channel configuration, we compare computational costs (model pa-
rameters, time complexity, and space complexity) as summarized in
Table 1. N denotes the size of the pixel in the T-F feature which is
equal to [T x F']. For simplicity, we only compare the convolution
process of the conventional Dynamic Convolution (DyConv) and our
Lightweight Dynamic Convolution (LDyConv).

Model parameters. In DyConv, the K? dimensional weight vector
is driven by the patch size K2. Thus, K* of parameters are used for
DyConv implementation. In LDyConyv, the PDF produces K? scalar
weights from the patch dimension and the IDF generates a weight
vector from F' by using two FC layers. Thus, LDyConv requires
K?(F + 1) parameters. Since K2 and F are of the same order, the
number of parameters required for DyConv and LDyConv are simi-
lar.

Time complexity. DyConv computes K* for every sample (pixel).
With the total number of samples (), DyConv has O(K*N) of
time complexity. In LDyConv, the PDF computes K2 for every
sample while the IDF is only performed per audio clip. Thus, time
complexity of LDyConv is O(K?(N -+ F)) or it is approximately
O(K?N) since N >> F. Our method would result in similar time
complexity over the static filter.

Space complexity As the DyConv generates patch-level dynamic
weight, it has O(K2N) of space complexity for saving dynamic
weight vector. On the other hand, our dynamic filter only requires
O(K? + N) of space complexity.

In summary, our proposed lightweight dynamic convolution model
has similar model complexity compared to a static convolution filter
model. We confirm that our proposed model consumes 2K parame-
ters and 220K Flops when K = 3, F' = 40, and T' = 98.

4. EXPERIMENT AND DISCUSSION

4.1. Experimental Setup

Dataset. We used speech command datasets v1 and v2 [20] for eval-
uating the KWS performance. By following the DB guideline of the
dataset, we utilized 10 keywords with two extra classes (unknown
or silent) for model training, injected background noise, and added
random time-shifting.

Noise setup. For evaluating robustness against noise, we utilized
DCASE [21]], Urbansound8K [22]] and WHAM [23]] datasets. These
three datasets contain background noise of urban locations. For data

augmentation, we randomly selected an audio sample from the noise
data and mixed it with the test audio of speech command with 5 dif-
ferent Signal-to-Noise ratios (SNRs) [20dB, 15dB, 10dB, 5dB, and
0dB].

Acoustic feature extraction. The acoustic feature we used is Mel
Frequency Cepstral Coefficients (MFCC) constructed with 30ms of
windows with 10ms overlap from an audio clip sampled at 16kHz.
64 Mel filters are employed to extract a Mel-spectrogram and 40
MEFCC coefficients are extracted. This process gives a [40,98] size
of audio features.

Computation setup. All our experiments are done by using the
Tensorflow deep learning package with RTX-2080 ti GPU. In the
training process, we used a batch size of 100, 30K iterations, and an
ADAM optimizer with a 0.001 initial learning rate. For every 10K
iteration, the learning rate is decreased by 0.1.

Implementation detail. In the PDF and the dynamic convolution
process, we used 3 x 3 CNN kernel (k = 3) dilated by (2,2) with a
stride of 1. In the IDF, the first FC and second FC follow 40 x 40
and 40 x k layer dimensions respectively. For DIN, two layers of FC
which have 40 X 40 filter size respectively are utilized to produce o
and 5.

4.2. Baselines

Four different baseline architectures are used for comparisons. We
implemented the proposed LDyConv on TENet architecture [12]
and compared its performance with the following baseline models.
TCNet. TCNet [11] (or TC-Resnet) utilized temporal convolution
and skip-connection for a fast and low computational cost model.
TCNet8 contains 3 convolution blocks and 1 FC layer. Each con-
volution block has two layers of temporal convolution with a skip
connection. Similarly, TCNetl4 contains 6 convolution blocks and
1 FC layer.

TENet. TENet [12] utilizes a depth-separable convolution frame-
work. A convolution block contains three convolutions with batch
normalization. TENet6 has 6 convolution blocks and 1 FC layer.
Each convolution block has two 1D convolutions and 1 temporal
convolution. TENet]2 contains 12 convolution blocks and 1 FC
layer. TENet has 32 output channels for each convolution block and
TENet-n has 16 output channels for each convolution block.
MHA-RNN. MHA-RNN][29]] utilizes CRNN and self-attention
mechanism for the KWS model training. The output of CRNN feeds
to a dot product-based Multi-Head Attention (MHA) model, and
two layers of FC produce probability values for KWS.

Neural Architecture Search. NAS is a network architecture de-
signing method for deep learning applications and Differentiable
Architecture Search (DARTS) is a variant of NAS that reduces
search costs by weight sharing. We compared various state-of-art
NAS methods in keyword spotting. Please see details of the model
in [13,114].

BC-Resnet. BroadCasted Resnet[30] uses BC block which contains
frequency and temporal depth-wise convolution with a SubSpectral-
Norm. In the BC block, the output of a 2D convolution is fed to the
pooling layer and FC layer to represent audio features.

Lightweight convolution. Lightweight convolution [24] (Lconv) is
a separable convolution method by using weight sharing and weight
normalization. A single block of Lconv contains two linear layers,
Gated Linear Unit (GLU) activation, and lightweight convolution.
we apply the single Lconv block at the front end of the TENet12
model. In the first linear layer, frequency is expended by 80, and
GLU is carried out to the frequency dimension. Then, lightweight
convolution (H = 10) and the other linear layer are computed by

Table 2: Comparison with lightweight models on Speech Command
vl and v2: Par. and Flops. denote Model parameters and compu-
tational cost respectively. Notation of { denotes the application of
Spec-Augmentation [31]. For an accurate experiment, 8 times aver-
aging accuracy and best performance are presented.

Vi V2
Model (Par.,Flops.) Acc Best ec Best
TCNet8|[L] (145K .4.40M) - 96.2 - -
TCNet14[L1] (305K.,8.26M) - 96.6 | 96.53 96.8
TENet12[12] (100K,6.42M) - 96.6 | 97.10 973
TENet12T[12] (100K,6.42M) 97.19 973 97.43 97.6
MHA-RNNT [29] (743K,87.2M) - 97.2 - 98.0
BC-ResNet3T [30] (54.2K,32.4M) 97.6 - 98.2 -
BC-ResNet6 ' [30] (188K,106.2M) 97.9 - 98.6 -
BC-ResNet8 ' [30] (321K,178.2M) 98.0 - 98.7 -
NAS2[13] (886K.-) - 97.2 - -
Random[14] (196K,8.8M) 96.58 96.8 - -
DARTS[14] (93K,4.9M) 96.63 969 | 9692 97.1
F-DARTS|[14] (188K,10.6M) 96.70 96.9 97.1 97.4
N-DARTS[14] (109K,6.3M) 96.79 97.2 | 97.18 97.4
Lconv[24] (105K,7.40M) 9688 97.0 | 97.24 973
Dconv|[24] (107K,7.69M) 96.89 97.1 9626 974
LDy-TENet12 (w/o DIN) (102K,6.64M) 96.95 97.1 97.35 97.6
LDy-TENet12 (w/o DNy - 9742 976 | 97.66 977
LDy-TENet12 (105K,6.97M) 96.94 97.1 9740 97.6
LDy-TENet12F - 9743 97.6 | 97.67 97.7

preserving temporal and spectral features. Additionally, by follow-
ing [24], we perform Dynamic convolution (Dyconv). Instead of
employing the static weight in the lightweight convolution, a single
linear layer is used to produce weights for Lconv. In our imple-
mentation, the Lconv block requires 982K of Flops. and 4.9K of
parameters. In the Dconv, 1373K of Flops. and 6.6K of parameters
are used.

4.3. Result discussion

Table 3: Comparison with Unseen noise environment on Speech
Command v1: experiment is performed on LDy-TENetl2,
TENet12, Lconv and Dconv models.

Model

Dconv

. SNR
Noise (dB) LDy. TENet
wDIN w/o DIN

20 97.08 97.17 96.90 97.07 97.10

15 96.87 96.91 96.76 96.80 96.84
DCASE 10 96.02 95.98 95.73 95.92 95.71
5 9438 94.15 93.79 94.11 93.85
0 90.64 90.42 89.18 89.53 89.20
20 96.36 96.34 96.27 96.25 96.34
15 95.50 95.50 95.42 95.42 95.49
Urban 10 93.99 94.15 93.74 93.76 93.49
5 91.11 90.80 90.02 90.03 90.17
0 82.32 81.39 79.73 80.00 80.26
20 96.67 96.66 96.51 96.61 96.60
15 95.97 95.93 95.86 95.94 95.98
WHAM 10 93.64 93.75 93.33 93.73 93.51
5 89.74 89.93 89.49 90.11 89.32
0 79.73 78.86 78.32 79.13 78.39

Lconv

Tables 2, 3, and 4 summarize the KWS results on the Speech
Command dataset vl and v2. Our proposed method, Lconv block,
and Dconv block are applied to the front end of the TENet12 model.
For a more thorough model evaluation, we repeated the experiment
8 times.

Small footprint KWS. Table 2 shows small-footprint KWS perfor-
mances over state-of-the-art methods. We compare the learning pa-
rameters, Flops., averaging accuracy, and the highest accuracy over
the 8 repeated experiments. For the fair comparison, we perform

Table 4: Comparison with Unseen noise environment on Speech
Command v2.

Model

SNR
(dB) LDy. TENet
w DIN w/o DIN
20 | 9724 9701 9680 9694 9679
15 | 9674 9635 9624 9629 96.05
DCASE | 10 | 9606 9549 9528 9523 95.18
5 | 9422 9374 9295 9285 92.82
0 | 9008 8905 8771 8766 87.36
20 | 9655 9622 9604 9616 _ 9606
15 | 9520 9499 9444 9455 94.65
Urban 10 | 9380 9345 9261 9241 9267
5 | 8928 8845 8760 87.18 87.51
0 | 8177 8025 7839 78.16 7824
20 | 9637 9611 9600 9619 _ 96.06
15 | 9572 9517 9487 9488 94.99
WHAM | 10 | 9357 9338 9300 9315 92.89
5 | 8891 8846 8799 8783 8741
0 | 7866 7743 7631 7665 17593

Noise

Dconv Lconv

Spec-Augmentation [31] during the training, and the results are in-
dicated by t. From the results, we confirm that our methods (LDy-
TENet) show improved performance over TENet based model. Par-
ticularly, the LDy-TENet6-n shows similar performance over the
TENet12 which is a 3 times larger model. Compared with the NAS-
based models, our LDy-TENet12 achieves the best-averaging accu-
racy with low computational costs. The performance improvement is
not significant between the TENet12 and the lightweight convolution
models (Lcon and Donv). Additionally, the parameters and Flops.
of Lconv and Dconv are higher than our method, while they take
degraded performance. Although BC-Resnet-based models show
improved performance over our method, these models require high
computational resources (FLOPS.) for their implementation. On the
other hand, our method can be worked by using small FLOPS.
Unseen noise environment. Tables 3 and 4 summarize KWS results
on the unseen noisy environment with 3 different noise datasets and
5 different SNRs. The results of the Lconv and Dconv are less sig-
nificant since they show similar performance with the TENet. On
the other hand, our proposed model shows more robust performance
over the baselines, and particularly the performance is improved
when the SNR is low. Compared with the TENet, 2.1% (v1) and
3.5% (v2) performance improvements are shown in the Urban 0dB
condition. Especially, leveraging DIN enhances the robustness of
the model in the blind environment. DIN delivers performance im-
provements when 5 and 0 dB SNR environments

As a result, our proposed dynamic filter in the front of the network
would enhance the performance of KWS in unseen noisy environ-
ments. Especially, as the model takes two main parts (PDF and IDF),
it can be implemented with a small computational cost.

5. CONCLUSION

The main focus of this study was to develop a lightweight dynamic
filter model for an acoustic feature extractor in Keyword spotting.
We proposed the Lightweight Dynamic Convolution model which
decomposes a dynamic filter into two parts (pixel and kernel) for al-
leviating the issues of computational cost and noise robustness. In
addition, Dynamic Instance Normalization delivers performance im-
provement over noisy environments. The process has a small foot-
print and through the relevant experiments, it is shown fast com-
pared to the conventional dynamic convolution method while retain-
ing the adaptability of a dynamic filter. The experiments confirmed
that our proposed lightweight model is robust on unseen noise over
lightweight models.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

6. REFERENCES

Y. Lee, J. Min, D. K. Han, and H. Ko, “Spectro-temporal
attention-based voice activity detection,” IEEE Signal Process-
ing Letters, vol. 27, pp. 131-135, 2020.

S. Lee, D. K. Han, and H. Ko, “Multimodal emotion recogni-
tion fusion analysis adapting bert with heterogeneous feature
unification,” IEEE Access, vol. 9, pp. 94 557-94 572, 2021.

G. Kim, D. K. Han, and H. Ko, “Specmix: A mixed sample
data augmentation method for training withtime-frequency do-
main features,” arXiv preprint arXiv:2108.03020, 2021.

D. Kim, S. Park, D. K. Han, and H. Ko, “Multi-band cnn archi-
tecture using adaptive frequency filter for acoustic event clas-
sification,” Applied Acoustics, vol. 172, p. 107579, 2021.

Y. Benayed, D. Fohr, J. P. Haton, and G. Chollet, “Con-
fidence measures for keyword spotting using support vec-
tor machines,” in 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03)., vol. 1. IEEE, 2003, pp. I-1.

H. Ketabdar, J. Vepa, S. Bengio, and H. Bourlard, “Posterior
based keyword spotting with a priori thresholds,” in Ninth In-
ternational Conference on Spoken Language Processing, 2006.

G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword
spotting using deep neural networks,” in 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2014, pp. 4087-4091.

T. N. Sainath and C. Parada, “Convolutional neural networks
for small-footprint keyword spotting,” in Sixteenth Annual
Conference of the International Speech Communication Asso-
ciation, 2015.

S. O. Arik, M. Kliegl, R. Child, J. Hestness, A. Gibiansky,
C. Fougner, R. Prenger, and A. Coates, “Convolutional re-
current neural networks for small-footprint keyword spotting,”
arXiv preprint arXiv:1703.05390, 2017.

Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello
edge: Keyword spotting on microcontrollers,” arXiv preprint
arXiv:1711.07128, 2017.

S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim,
and S. Ha, “Temporal convolution for real-time keyword spot-
ting on mobile devices,” arXiv preprint arXiv:1904.03814,
2019.

X. Li, X. Wei, and X. Qin, “Small-footprint keyword spot-
ting with multi-scale temporal convolution,” arXiv preprint
arXiv:2010.09960, 2020.

T. Mo, Y. Yu, M. Salameh, D. Niu, and S. Jui, “Neu-
ral architecture search for keyword spotting,” arXiv preprint
arXiv:2009.00165, 2020.

B. Zhang, W. Li, Q. Li, W. Zhuang, X. Chu, and Y. Wang,
“Autokws: Keyword spotting with differentiable architecture
search,” in ICASSP 2021-2021 IEEFE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 1EEE,
2021, pp. 2830-2834.

X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dy-
namic filter networks,” in Advances in neural information pro-
cessing systems, 2016, pp. 667-675.

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

D. Kim, J. Park, D. K. Han, and H. Ko, “Dual stage learn-
ing based dynamic time-frequency mask generation for au-
dio event classification,” Proc. Interspeech 2020, pp. 836-840,
2020.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normal-
ization: The missing ingredient for fast stylization,” arXiv
preprint arXiv:1607.08022, 2016.

S. Chang, H. Park, J. Cho, H. Park, S. Yun, and K. Hwang,
“Subspectral normalization for neural audio data process-
ing,” in ICASSP 2021-2021 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). 1EEE,
2021, pp. 850-854.

P. Warden, “Speech commands: A dataset for
limited-vocabulary speech recognition,” arXiv preprint

arXiv:1804.03209, 2018.

A. Mesaros, T. Heittola, and T. Virtanen, “Acoustic scene clas-
sification in dcase 2019 challenge: Closed and open set classi-
fication and data mismatch setups,” 2019.

J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy
for urban sound research,” in Proceedings of the 22nd ACM
international conference on Multimedia, 2014, pp. 1041-1044.

G. Wichern, J. Antognini, M. Flynn, L. R. Zhu, E. McQuinn,
D. Crow, E. Manilow, and J. Le Roux, “Wham!: Extending
speech separation to noisy environments,” in Proc. Interspeech,
Sep. 2019.

F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli,
“Pay less attention with lightweight and dynamic convolu-
tions,” arXiv preprint arXiv:1901.10430, 2019.

Y. Fujita, A. S. Subramanian, M. Omachi, and S. Watanabe,
“Attention-based asr with lightweight and dynamic convolu-
tions,” in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 1EEE,
2020, pp. 7034-7038.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all
you need,” in Advances in neural information processing sys-
tems, 2017, pp. 5998-6008.

J. Zhou, V. Jampani, Z. Pi, Q. Liu, and M.-H. Yang, “Decou-
pled dynamic filter networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

2021, pp. 6647-6656.

Y. Jing, X. Liu, Y. Ding, X. Wang, E. Ding, M. Song, and
S. Wen, “Dynamic instance normalization for arbitrary style
transfer,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 4369-4376.

O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai,
and S. Laurenzo, “Streaming keyword spotting on mobile de-
vices,” arXiv preprint arXiv:2005.06720, 2020.

B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted resid-
ual learning for efficient keyword spotting,” arXiv preprint
arXiv:2106.04140, 2021.

D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmenta-
tion method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

	 Introduction
	 Related Works
	 Lightweight dynamic filter
	 Pixel Dynamic Filter
	 Instance-level Dynamic Filter
	 Dynamic Convolution
	 Dynamic Instance Normalization
	 Computational Complexity

	 Experiment and discussion
	 Experimental Setup
	 Baselines
	 Result discussion

	 Conclusion
	 References

