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ABSTRACT

Multimodal emotion recognition from physiological sig-
nals is receiving an increasing amount of attention due to
the impossibility to control them at will unlike behavioral
reactions, thus providing more reliable information. Existing
deep learning-based methods still rely on extracted hand-
crafted features, not taking full advantage of the learning
ability of neural networks, and often adopt a single-modality
approach, while human emotions are inherently expressed
in a multimodal way. In this paper, we propose a hyper-
complex multimodal network equipped with a novel fusion
module comprising parameterized hypercomplex multiplica-
tions. Indeed, by operating in a hypercomplex domain the
operations follow algebraic rules which allow to model la-
tent relations among learned feature dimensions for a more
effective fusion step. We perform classification of valence
and arousal from electroencephalogram (EEG) and periph-
eral physiological signals, employing the publicly available
database MAHNOB-HCI surpassing a multimodal state-of-
the-art network. The code of our work is freely available at
https://github.com/ispamm/MHyEEG.

Index Terms— Hypercomplex Neural Networks, Hyper-
complex Algebra, EEG, Multimodal Emotion Recognition

1. INTRODUCTION

Emotion is an essential part of human communication that
plays a vital role in the overall quality and outcome of in-
teractions. Thus, automatic emotion recognition and affec-
tive computing have gained much interest, also considering
the wide range of applications in human-computer interac-
tion (HCI) [1]. Humans manifest emotions in a multimodal
way, including facial expressions, speech, body language, and
physiological signals. While behavioral reactions can be eas-
ily controlled, for example, real emotion can be concealed by
adjusting expressions or tone of voice, physiological signals
cannot be governed at will, thus being more reliable for rec-
ognizing human emotion [2]. Therefore, on account of the
development of non-invasive and inexpensive wearable de-
vices, physiological-based emotion recognition has become
a hot topic in affective computing research. Among these,
electroencephalography (EEG) is a measure of the electrical

activity of the brain that is directly correlated with the cogni-
tive process and can provide key information regarding emo-
tional states being characterized by excellent temporal reso-
lution [3]. Therefore, EEG-based analysis has received an in-
creasing amount of attention for a variety of applications such
as epileptic seizure detection [4], general EEG classification
[5] and emotion recognition [6].

Nevertheless, most studies do not take full advantage of
the learning ability of deep learning models and most of the
time focus on a single-modality approach. In fact, the in-
put to the neural model is often extracted features instead of
the raw data and corresponding to a single modality, gener-
ally EEG, when in reality human emotions are intrinsically
multimodal, with different modalities describing different as-
pects of an emotional reaction and correlations among them
providing critical information if exploited correctly [2]. Re-
cent works have started to take a multimodal approach, but
most rely on trivial techniques and few studies explore more
emerging paradigms such as multimodal learning [7]. There-
fore, effectively learning from multiple physiological signals
to produce more powerful feature representations is still an
open problem. Motivated by the described challenges, in this
paper we address the more difficult approach of learning di-
rectly from raw signals and propose a multimodal architecture
with a novel fusion module that exploits the properties of al-
gebras in the hypercomplex domain to truly take advantage of
correlations characteristic of EEG and peripheral physiologi-
cal signals.

Parameterized hypercomplex neural networks (PHNNs)
are an emerging family of models which operate in a hyper-
complex number domain [8, 9]. They have been introduced in
order to generalize the more common quaternion neural net-
works (QNNs) which are defined in the quaternion domain
and are thus limited to 4D input data but possess very pow-
erful capabilities [10]. In fact, thanks to quaternion algebra
operations, such as the Hamilton product, these models are
endowed with the ability to capture not only global relations
as any neural network but also local relations among input
data, unlike real-valued counterparts, as well as being more
lightweight [11]. Thanks to the introduction of parameterized
hypercomplex multiplication (PHM) and convolution (PHC),
these advantages have been extended to inputs of any dimen-
sionality n, with a reduction of parameters of 1/n.
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Owing to these advantages, we design a hypercomplex
multimodal network with a novel fusion module defined in
the hypercomplex domain, thus comprising PHM layers that
thanks to hypercomplex algebra properties endow the ar-
chitecture with the ability to model correlations among the
learned latent features, thus learning a more effective fused
representation. Specifically, we perform classification of
valence and arousal from EEG, electrocardiogram (ECG),
galvanic skin response (GSR), and eye data, and we validate
the proposed approach on a publicly available benchmark,
MAHNOB-HCI [12], showing how our method outperforms
a multimodal state-of-the-art network.

2. BACKGROUND

A plethora of machine learning approaches for emotion
recognition have been proposed [13, 14, 15]. However, em-
ploying such methods requires extensive domain knowledge
to extract relevant features. On the other hand, deep learning
models are able to learn features directly from the raw data
and thus learn a powerful latent representation. Due to these
advantages, many deep learning-based methods have been
investigated [16, 17, 18, 19]. Nonetheless, even though such
works employ neural networks, they still rely on extracted
features, such as power spectral density (PSD) and differ-
ential entropy (DE), instead of taking full advantage of the
representational learning ability of neural models. Rather,
a study that employs raw EEG signals has proposed a 3D
representation of the data to be processed by a 3D convolu-
tional neural network (CNN) [20]. However, all aforemen-
tioned methods focus on a single-modality approach which
is suboptimal [2]. Thus in order to exploit the information
contained in different modalities, recent studies adopt a mul-
timodal approach for emotion recognition, some still relying
on extracted features [2, 21, 22] and very few that directly
employ raw data [23, 24, 25], where the latter focuses on
perceived mental workload classification instead of emotion
recognition.

Aside from feature extraction, the crucial step of multi-
modal learning is the fusion strategy. Surely, much of the
research in this field has focused on this aspect, as there are
a multitude of manners to incorporate information from dif-
ferent modalities. Starting from the most trivial, i.e. early fu-
sion in which data from different modalities is concatenated
to form a single input to the model, and late fusion which
consists in aggregating decisions of different networks trained
separately on each modality to obtain a final output. Both
strategies suffer from several problems, where the first does
not take into account the different nature of the input modali-
ties, not taking advantage of complementary information and
not allowing to identify relations among them, while the sec-
ond does not exploit cross-modal information during learn-
ing at all, also requiring to optimize a different network for
each modality. Instead, more complex strategies fall under the

name of intermediate fusion, which consists in first learning
modality-specific latent representations that are subsequently
fused together for further processing [7]. Thus, in this paper,
we investigate and propose a novel technique that allows to
effectively grasp correlations between the different modali-
ties during learning thanks to its definition in a hypercomplex
algebraic system.

3. METHODOLOGY

3.1. Hypercomplex neural models

Hypercomplex neural networks are neural models defined in
a hypercomplex number system H which is regulated by the
respective algebra rules that define addition and multiplica-
tion operations. A generic hypercomplex number is defined
as

h = h0 + hi ı̂i + . . .+ hn ı̂n, i = 1, . . . , n (1)

where h0, . . . , hn ∈ R and ı̂i, . . . , ı̂n ∈ H are the imaginary
units.

The general hypercomplex domain H includes various al-
gebraic systems such as the complex C domain when n = 2
and the quaternion Q domain when n = 4, where quaternion
neural networks (QNNs) operate in. In fact, algebra rules
are defined only at predefined dimensions of n = 2m, with
m ∈ N, owing to the fact that hypercomplex algebras are
included in the family of Cayley-Dickson algebras. Thus,
each of these number systems is identified by the number
of imaginary units and consequently by the different defini-
tions of the multiplication operation as a result of the dis-
parate interactions among imaginary units. For example, in
the quaternion domain, the product is non-commutative, with
ı̂1 ı̂2 ̸= ı̂2 ı̂1. Therefore, in the latter domain, the Hamil-
ton product was introduced, which also regulates the matrix
multiplication in fully connected layers and the convolution
operation in convolutional layers, since both the weight ma-
trix and the input are encapsulated into a quaternion in the
following way: W = W0 + W1 ı̂1 + W2 ı̂2 + W3 ı̂3 and
x = x0 + x1 ı̂1 + x2 ı̂2 + x3 ı̂3, respectively. As a conse-
quence, the matrix multiplication of a general fully connected
layer becomes

Wx =


W0 −W1 −W2 −W3

W1 W0 −W3 W2

W2 W3 W0 −W1

W3 −W2 W1 W0




x0

x1

x2

x3

 . (2)

From eq. (2) it can be seen that the filter submatrices
are shared among input dimensions, thus not only reducing
the number of free parameters by 1/4, resulting in a more
lightweight model, but additionally endowing the neural net-
work with the ability to grasp latent relations among chan-
nel dimensions. Nonetheless, QNNs are limited to 4D inputs,
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Fig. 1. HyperFuseNet architecture. The encoder learns modality-specific latent representations in the real domain, which are
then merged together and processed by the novel fusion module in the hypercomplex domain with n = 4. Finally, a fully-
connected layer produces the prediction for arousal/valence.

therefore parameterized hypercomplex multiplication (PHM)
[8] and convolution (PHC) [9] have been introduced to bridge
this gap. The core idea of these methods lies in expressing the
weight matrix as a sum of n ∈ N Kronecker products, thus we
have

W =

n∑
i=0

Ai ⊗ Fi, (3)

whereby matrices Ai encode the algebra rules, directly
learned from the data, and Fi represent the filters. As a
result of eq. (3), a parameterization of W is obtained, mean-
ing that n is a user-defined hyperparameter that decides in
which domain the neural model operates (e.g., n = 4 for
the quaternion domain), thus extending the aforementioned
properties of QNNs to general input domains nD. Specifi-
cally, PHM and PHC layers employ 1/n free parameters with
respect to real-valued counterparts and still possess the ability
to model correlations present in the data, unlike real-valued
networks.

3.2. Multimodal Hypercomplex Fusion Network

To address the challenges presented in Section 2 we propose
HyperFuseNet, a multimodal architecture that exploits hyper-
complex algebra properties to effectively fuse the learned la-
tent representations as can be seen in Fig. 1. The neural model
comprises two main components, that is the encoder and a hy-
percomplex fusion module. Concretely, the encoder is com-
posed of four different branches in the real domain, one for
each modality, and has the objective of learning modality-
specific latent representations directly from the raw signals,
thus with a modality-level focus. Thereafter, these features in
the latent space are merged together and processed by the pro-
posed hypercomplex fusion module. The latter is composed

of PHM layers with the hyperparameter n set to 4, as there
are four feature vectors in input to the module correspond-
ing to the four modalities, and has the role of learning a fused
representation, thus performing a patient-level analysis. More
in detail, by defining multiplications in the hypercomplex do-
main, the proposed fusion module possesses the capability of
grasping cross-modal interactions between the learned latent
features of the EEG, ECG, GSR, and eye data signals, which
are highly correlated. Thus, the hypercomplex fusion module
captures both global and local relations between feature di-
mensions, unlike real-valued networks, accordingly learning
a more powerful representation by truly exploiting the corre-
lations present in the different physiological signals.

4. EXPERIMENTAL RESULTS

4.1. Dataset

To validate the proposed approach we adopt a publicly avail-
able dataset, that is MAHNOB-HCI [12]. It is a multimodal
dataset for affect recognition which includes synchronized
recordings of face video, audio signal, eye gaze data, and
peripheral/central nervous system physiological signals of 27
participants while watching emotional video clips. The eye
gaze data comprises pupil dimensions, gaze coordinates, and
eye distances, while for the physiological signals, we focus
on EEG, ECG, and GSR, as these are highly related to emo-
tional changes [12]. The database provides labels related to
arousal, i.e., calm, medium aroused, and excited, and valence,
i.e., unpleasant, neutral valence, and pleasant.

4.2. Preprocessing and data augmentation

Firstly, we downsample EEG, ECG, and GSR signals from
256Hz to 128Hz, while we keep eye data at 60Hz. Then,



Table 1. Results on MAHNOB-HCI of the proposed method compared against a state-of-the-art model with and without data
augmentation.

Model Augm. Arousal Valence

F1-score Accuracy F1-score Accuracy

Dolmans [25]
✗

36.60 ± 1.61 41.23 ± 2.03 37.44 ± 3.22 41.89 ± 3.34
HyperFuseNet (ours) 38.83 ± 1.66 40.02 ± 1.98 41.43 ± 1.62 43.42 ± 2.57

Dolmans [25]
✓

38.86 ± 1.11 40.90 ± 0.62 38.33 ± 1.24 40.24 ± 1.04
HyperFuseNet (ours) 39.65 ± 1.75 41.56 ± 1.33 43.60 ± 2.22 44.30 ± 2.01

we filter EEG and ECG signals with a band-pass filter at 1-
45Hz and 0.5-45Hz, respectively [14, 23], while a low-pass
filter at 60Hz is applied to GSR signals [26], and for all of
them an additional notch filter at 50Hz [16], with all EEG
signals being firstly referenced to average. Additionally, we
perform a baseline correction on the GSR signal with respect
to the mean value within the 200ms preceding each trial to
eliminate the initial offset of the signal. Finally, as for EEG
data, we select 10 channels out of the original 32, i.e., F3, F4,
F7, F8, FC5, FC6, T7, T8, P7, and P8, as these are the most
related to emotion [27, 28]. Instead, regarding eye data, we
take the average between the signals related to the two eyes
and we keep −1 values as they correspond to blinks or rapid
movements which are relevant to the task at hand.

We extract samples by dividing the last 30s of each trial
into three segments of 10s, as measurements toward the end
of the clips reflect the emotion of the subjects’ rating [23].
Finally, we split the dataset in a stratified fashion by taking
20% of the data for testing. Training samples are then aug-
mented by applying scaling and noise addition. Firstly, two
scaling factors are uniformly sampled over two intervals, i.e.,
[0.7, 0.8] and [1.2, 1.3], and applied to the original sample to
generate two augmented versions. Then, a Gaussian noise
signal with zero mean is added to each sample, with its stan-
dard deviation being computed modality-wise such that the
augmented signal has a signal-to-noise ratio (SNR) of 5dB. A
total of 30 augmented signals are generated for each original
sample.

4.3. Architecture and training recipe

The proposed architecture comprises four branches that com-
pose the encoder and a hypercomplex fusion module. The
branches consist of three fully-connected layers, except for
the GSR branch which has two, with 128 units for eye data
and GSR, 512 for ECG, and 1024 for EEG, interleaved with
batch normalization and ReLU activation function, inspired
by [25]. Then, the learned latent representations are merged
together and processed by the proposed fusion module which
comprises four PHM layers with n = 4, with the same inter-
leaved layers and the number of units halved at each layer, a
dropout layer, and the final output layer. The model is trained

using the Adam optimizer, with a categorical cross-entropy
loss and a one-cycle policy. The best hyperparameters are
found by doing a bayesian search, sampling the learning rate
from [0.001, 0.008]. The number of epochs is set to 100 with
early stopping with patience at 20.

4.4. Results

We report in Tab. 1 the results of the conducted experimental
analysis, showing the mean over 3 runs of the F1-score and
accuracy, which indeed is not always representative due to
imbalance of classes. In detail, we compare the proposed ar-
chitecture against a state-of-the-art multimodal network that
also operates with raw signals and is originally designed for
mental workload classification. We train it using the same ap-
proach we employed for our network on the same database.
Firstly, we can observe that the employed data augmentation
is effective and improves the performance of both networks.
Secondly, and most importantly, the proposed hypercomplex
architecture outperforms the method employed as comparison
in both augmentation scenarios, thus demonstrating the effi-
cacy of the PHM layers in the fusion step which yield better
emotion recognition accuracy as a result of the grasped cross-
modal correlations thanks to hypercomplex algebra rules.

5. CONCLUSION

In this paper, we proposed a multimodal architecture with a
novel hypercomplex fusion module for emotion recognition
from EEG and peripheral physiological signals, in which a
modality-specific representation is firstly learned in the real
domain and consequently processed together by the fusion
module in the hypercomplex domain. The latter was found
to be effective to perform a more proper fusion step than clas-
sical real-valued fully-connected layers, in fact, by employ-
ing hypercomplex multiplications the module is capable of
capturing relations among the learned latent features and as a
result learn a more discriminant representation. In future ef-
forts, we aim at additionally exploiting intra-modality corre-
lations with parameterized hypercomplex convolutions, thus
bringing the advantages of the fusion step also at the encoder
level.
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